Free Access
Issue
ESAIM: COCV
Volume 23, Number 4, October-December 2017
Page(s) 1293 - 1329
DOI https://doi.org/10.1051/cocv/2016053
Published online 31 May 2017
  1. S. Adly, T. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities. Math. Program. Ser. B 148 (2014) 5–47. [CrossRef]
  2. H. Benabdellah, Existence of solutions to the nonconvex sweeping process. J. Differ. Eqs. 164 (2000) 286–295. [CrossRef]
  3. M. Bounkhel, L. Thibault, On various notions of regularity of sets in nonsmooth analysis. Nonlinear Anal. Ser. A: Theory Methods 48 (2002) 223–246. [CrossRef]
  4. M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6 (2005) 359–374. [MathSciNet]
  5. C. Castaing, Equation différentielle multivoque avec contrainte sur l’état dans les espaces de Banach. Travaux Sém. Anal. Convexe. Montpellier (1978) Exposé 13.
  6. C. Castaing and M.D.P. Monteiro Marques, BV periodic solutions of an evolution problem associated with continuous moving convex sets. Set-Valued Anal. 3 (1995) 381–399. [CrossRef] [MathSciNet]
  7. C. Castaing, M.D.P. Monteiro Marques, Evolution problems associated with non-convex closed moving sets with bounded variation. Portugal. Math. 53 (1996) 73–87. [MathSciNet]
  8. F.H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control. Springer, London (2013).
  9. G. Colombo and V.V. Goncharov, The sweeping processes without convexity. Set-Valued Anal. 7 (1999) 357–374. [CrossRef] [MathSciNet]
  10. B. Cornet, Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl. 96 (1983) 130–147. [CrossRef] [MathSciNet]
  11. N. Dinculeanu, Vector Measures, Pergamon, Oxford (1967).
  12. J.F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusions with perturbation. J. Differ. Eqs. 226 (2006) 135–179. [CrossRef]
  13. M. Falcone, P. Saint-Pierre, Slow and quasi-slow solutions of differential inclusions. Nonlinear Anal. 11 (1987) 367–377. [CrossRef] [MathSciNet]
  14. H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. [CrossRef] [MathSciNet]
  15. C. Henry, An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41 (1973) 179–186. [CrossRef] [MathSciNet]
  16. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, London (1995).
  17. M.D.P. Monteiro Marques, Perturbations convexes semi-continues supérieurement de problèmes d’évolution dans les espaces de Hilbert. Travaux Sém. Anal. Convexe. Montpellier (1984) Exposé 2.
  18. B. Maury and J. Venel, A mathematical framework for a crowd motion model, C. R. Math. Acad. Sci. Paris 346 (2008) 1245–1250. [CrossRef] [MathSciNet]
  19. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Vol. 330 Grundlehren Series. Springer (2006).
  20. J.J. Moreau, Rafle par un convexe variable I. Travaux Sém. Anal. Convexe. Montpellier (1971) Exposé 15.
  21. J.J. Moreau, On unilateral constraints, friction and plasticity. New Variational Techniques in Mathematical Physics (C.I.M.E., II Ciclo 1973). Edizioni Cremonese, Rome (1974) 171–322.
  22. J.J. Moreau, Sur les mesures différentielles des fonctions vectorielles à variation bornée. Travaux Sém. Anal. Convexe. Montpellier (1975) Exposé 17.
  23. J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Eqs. 26 (1977) 347–374. [CrossRef]
  24. J.J. Moreau, Bounded variation in time. Topics in nonsmooth mechanics, Vol. 174. Birkhäuser, Basel (1988).
  25. J.J. Moreau, Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Engrg. 177 (1999) 329–349. [CrossRef] [MathSciNet]
  26. J.J. Moreau, An introduction to unilateral dynamics. Novel Approaches in Civil Engineering. Edited by M. Frémond and F. Maceri. Springer, Berlin (2002).
  27. J.J. Moreau and M. Valadier, A chain rule involving vector functions of bounded variation. J. Funct. Anal. 74 (1987) 333–345. [CrossRef] [MathSciNet]
  28. R.A. Poliquin, R.T. Rockafellar, L. Thibault, Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231–5249. [CrossRef] [MathSciNet]
  29. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York (1998).
  30. A. Tanwani, B. Brogliato and C. Prieur, Stability and observer design for Lur’e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps. SIAM J. Control Optim. 52 (2014) 3639–3672. [CrossRef] [MathSciNet]
  31. L. Thibault, Sweeping process with regular and nonregular sets. J. Differ. Eqs. 193 (2003) 1–26. [CrossRef]
  32. M. Valadier, Quelques problèmes d’entraînement unilatéral en dimension finie, Travaux Sém. Anal. Convexe. Montpellier (1988) Expos8é.
  33. M. Valadier, Rafle et viabilité. Travaux Sém. Anal. Convexe. Montpellier (1992) Exposé 17.
  34. J. Venel, A numerical scheme for a class of sweeping processes. Numer. Math. 118 (2011) 367–400. [CrossRef] [MathSciNet]
  35. J.-P. Vial, Strong and weak convexity of sets and functions. Math. Oper. Res. 8 (1983) 231–259. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.