Free Access
Issue
ESAIM: COCV
Volume 23, Number 4, October-December 2017
Page(s) 1473 - 1498
DOI https://doi.org/10.1051/cocv/2016061
Published online 06 September 2017
  1. F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled systems under geometric conditions. C. R. Math, Acad. Sci. Paris 349 (2011) 395–400. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alabau-Boussouira and M. Lautaud, Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99 (2013) 544–576. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl. 1 (2009) 427–457. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems. J. Evol. Equ. 9 (2009) 267–291. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force. ESAIM: COCV 11 (2005) 426–448. [CrossRef] [EDP Sciences] [Google Scholar]
  6. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Controllability of some system of parabolic equations. In Proc. of the II Encuentro RSME-SMM (2012). [Google Scholar]
  8. F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains. C. R. Math. Acad. Sci. Paris 352 (2014) 391–396. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence. J. Math. Anal. Appl. 444 (2016) 1071–1113. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Benabdallah, M. Cristofol, P. Gaitan and L. De Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force. Math. Control Relat. Fields 4 (2014) 17–44. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Math. Control Relat. Fields 4 (2014) 263–287. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  13. B. Dehman and M. Lautaud, Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211 (2014) 113–187. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Duprez and P. Lissy, Indirect controllability of some linear parabolic systems of m equations with m - 1 controls involving coupling terms of zero or first order. J. Math. Pures Appl. 106 (2016) 905–934. [CrossRef] [MathSciNet] [Google Scholar]
  15. H.O. Fattorini, Some remarks on complete controllability. SIAM J. Control 4 (1966) 686–694. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations. J. Funct. Anal. 259 (2010) 1720–1758. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-M. Ghidaglia, Some backward uniqueness results. Nonlinear Anal., Theory, Methods Appl. 10 (1986) 777–790. [CrossRef] [Google Scholar]
  18. M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Port. Math. 67 (2010) 91–113. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Guerrero, Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46 (2007) 379–394. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Avant propos de P. Lelong. Dunod, Paris (1968). [Google Scholar]
  21. L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Olive, Boundary approximate controllability of some linear parabolic systems. Evol. Equ. Control Theory 3 (2014) 167–189. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris 349 (2011) 291–296. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.