Open Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 15
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2018003
Published online 18 June 2019
  1. Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations on networks. IFAC Proc. 44 (2011) 2577–2582. [CrossRef] [Google Scholar]
  2. Y. Achdou, F. Camilli, A. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks. NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445. [CrossRef] [Google Scholar]
  3. Y. Achdou, S. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks. ESAIM: COCV 21 (2015) 876–899. [CrossRef] [EDP Sciences] [Google Scholar]
  4. G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal. 20 (1993) 1123–1134. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074 of Lecture Notes in Mathematics. Springer, Heidelberg (2013) 49–109. [CrossRef] [Google Scholar]
  6. G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in ℝN. ESAIM: COCV 19 (2013) 710–739. [CrossRef] [EDP Sciences] [Google Scholar]
  7. G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in ℝN. SIAM J. Control Optim. 52 (2014) 1712–1744. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.-P. Blanc, Deterministic exit time control problems with discontinuous exit costs. SIAM J. Control Optim. 35 (1997) 399–434. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data. Nonlinear Anal. 45 (2001) 1015–1037. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Camilli and C. Marchi, A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks. J. Math. Anal. Appl. 407 (2013) 112–118. [CrossRef] [Google Scholar]
  11. I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318 (1990) 643–683. [CrossRef] [MathSciNet] [Google Scholar]
  12. K.-J. Engel, M. Kramar Fijavvz, R. Nagel and E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46 (2013) 725–747. [CrossRef] [Google Scholar]
  14. M. Garavello and B. Piccoli, Conservation laws models, in Traffic Flow on Networks. Vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). [Google Scholar]
  15. P. J. Graber, C. Hermosilla and H. Zidani, Discontinuous solutions of Hamilton-Jacobi equations on networks. J. Differ. Equ. 263 (2017) 8418–8466. [CrossRef] [Google Scholar]
  16. C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50 (2017) 357–448. [CrossRef] [Google Scholar]
  17. C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM: COCV 19 (2013) 129–166. [CrossRef] [EDP Sciences] [Google Scholar]
  18. H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074 of Lecture Notes in Mathematics Springer, Heidelberg (2013) 111–249. [CrossRef] [Google Scholar]
  19. P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545. [CrossRef] [Google Scholar]
  20. P.-L. Lions and P. Souganidis, Well Posedness for Multi-dimensional Junction Problems With Kirchoff-Type Conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017) 807–816. [CrossRef] [Google Scholar]
  21. S. Oudet, Hamilton-Jacobi Equations for Optimal Control on Multidimensional Junctions. Preprint arXiv:1412.2679 (2014). [Google Scholar]
  22. D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological networks. Calc. Var. Partial Differ. Equ. 46 (2013) 671–686. [Google Scholar]
  23. H.M. Soner, Optimal control with state-space constraint. I. SIAM J. Control Optim. 24 (1986) 552–561. [CrossRef] [MathSciNet] [Google Scholar]
  24. H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim. 24 (1986) 1110–1122. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.