Open Access
Volume 26, 2020
Article Number 32
Number of page(s) 16
Published online 09 April 2020
  1. W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Vol. 96. Springer Science & Business Media, Basel (2011). [CrossRef] [Google Scholar]
  2. L.D. Berkovitz, Optimal Control Theory. Springer-Verlag, New York (1974). [CrossRef] [Google Scholar]
  3. L. Cesari, Optimization – Theory and Applications. Springer Verlag, New York (1983). [CrossRef] [Google Scholar]
  4. F.S. De Blasi and G. Pianigiani, Evolution inclusions in non separable Banach spaces. Comment. Math. Univ. Carolin. 40 (1999) 227–250. [Google Scholar]
  5. N. Dinculeanu, Vector Measures. VEB Deutscher Verlag der Wissenschaften, Berlin (1967). [Google Scholar]
  6. I. Dobrakov, On representation of linear operators on C0(T, X). Czech. Math. J. 21 (1971) 13–30. [Google Scholar]
  7. A.F. Filippov, On some problems of optimal control theory. Vestnik Moskowskovo Universiteta, Math 2 (1958) 25–32. [English version: On certain questions in the theory of optimal control. J. SIAM Ser. A Control 1 (1962) 76–84]. [Google Scholar]
  8. H. Frankowska, A priori estimates for operational differential inclusions. J. Differ. Equ. 84 (1990) 100–128. [Google Scholar]
  9. R.V. Gamkrelidze, On sliding optimal states. Dokl. Akad. Nauk SSSR 143 (1962) 1243–1245. (English translation: Sov. Math. Dokl. 3, 559–562)). [Google Scholar]
  10. F.M. Hante, Relaxation methods for hyperbolic pde mixed-integer optimal control problems. Optim. Control Appl. Methods 38 (2017) 1103–1110. [Google Scholar]
  11. F.M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55 (2013) 197–225. [Google Scholar]
  12. J. Haslinger and R.A.E. Mäkinen, On a topology optimization problem governed by two-dimensional Helmholtz equation. Comput. Optim. Appl. 62 (2015) 517–544. [Google Scholar]
  13. C. Kirches, F. Lenders and P. Manns, Approximation properties and tight bounds for constrained mixed-integer optimal control. Preprint Optimization Online n°5404 (2016). Available on:˙FILE/2016/04/5404.pdf. [Google Scholar]
  14. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). [CrossRef] [Google Scholar]
  15. P. Manns, C. Kirches and F. Lenders, A linear bound on the integrality gap for sum-up rounding in the presence of vanishing constraints. Preprint Optimization Online n°6580 (2017). Available on:˙FILE/2018/04/6580.pdf. [Google Scholar]
  16. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44. Springer Science & Business Media, Switzerland (1983). [CrossRef] [Google Scholar]
  17. S. Sager, Numerical Methods for Mixed-Integer Optimal Control Problems. Der andere Verlag Tönning, Lübeck, Marburg (2005). Available on: [Google Scholar]
  18. S. Sager, Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 19 (2009) 1238–1247. [Google Scholar]
  19. S. Sager, H.G. Bock and M. Diehl, The integer approximation error in mixed-integer optimal control. Math. Program. Ser. A 133 (2012) 1–23. [CrossRef] [Google Scholar]
  20. J. Simon, Compact sets in the space Lp((0, T), B). Ann. Mat. Pura Appl. 146 (1986) 65–96. [Google Scholar]
  21. T. Ważewski, On an optimal control problem, in Differential Equations and Their Applications. Publishing House of the Czechoslovak Academy of Sciences, New York (1963) 229–242. [Google Scholar]
  22. F. You and S. Leyffer, Oil spill response planning with MINLP. SIAG/OPT Views-and-News 21 (2010) 1–8. [Google Scholar]
  23. V.M. Zavala, Stochastic optimal control model for natural gas networks. Comput. Chem. Eng. 64 (2014) 103–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.