Open Access
Issue |
ESAIM: COCV
Volume 26, 2020
|
|
---|---|---|
Article Number | 66 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/cocv/2019041 | |
Published online | 22 September 2020 |
- J.-P. Aubin and H. Frankowska, Set-valued analysis. Springer Science & Business Media (2009). [CrossRef] [Google Scholar]
- M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of the Hamilton-Jacobi Equations. Birkhäuser, Boston (1997). [CrossRef] [Google Scholar]
- J. Bernis, Chimie Organique et Supramoléculaire. Ph.D. thesis, Université de Bretagne Occidentale (2007). [Google Scholar]
- P. Bettiol and R.B. Vinter, The Hamilton Jacobi Equation For Optimal Control Problems with Discontinuous Time Dependence. SIAM J. Control Optim. 55 (2017) 1199–1225. [Google Scholar]
- G. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Springer Science & Business Media (2004). [Google Scholar]
- L. Cesari, Optimization-theory and applications: problems with ordinary differential equations, vol. 17. Springer Science & Business Media (2012). [Google Scholar]
- F. H. Clarke, Functional analysis, calculus of variations and optimal control. Vol. 264 of Graduate Texts in Mathematics. Springer Science & Business Media (2013). [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative properties of trajectories of control systems: a survey. J. Dynam. Control Syst. 1 (1995) 1–48. [CrossRef] [MathSciNet] [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Vol. 178 of Graduate Texts in Mathematics. Springer Verlag, New York (1998). [Google Scholar]
- G. Dal Maso and H. Frankowska, Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities. ESAIM: COCV 5 (2000) 369–393. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Dal Maso, H. Frankowska, et al., Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, Du Bois-Reymond necessary conditions, and Hamilton-Jacobi equations. Appl. Math. Optim. 48 (2003) 39–66. [Google Scholar]
- H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257–272. [Google Scholar]
- H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton–Jacobi–Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46 (2013) 725–747. [Google Scholar]
- H. Frankowska, S. Plaskacz and T. Rzezuchowski, Measurable viability theorems and the Hamilton-Jacobi-Bellman equation. J. Differ.Equ. 116 (1995) 265–305. [CrossRef] [MathSciNet] [Google Scholar]
- H. Frankowska and R.B. Vinter, Existence of neighbouring feasible trajectories: applications to dynamic programming for state constrained optimal control problems. J. Optim. Theory Appl. 104 (2000) 21–40. [Google Scholar]
- A.D. Ioffe, Calculus of Dini subdifferentials of functions and contingent coderivatives of set valued maps. Nonlinear Anal. Theory Methods Appl. 8 (1984) 517–539. [Google Scholar]
- C. Olech, Weak lower semicontinuity of integral functionals. J. Optim. Theory Appl. 19 (1976) 3–16. [Google Scholar]
- S. Plaskacz, M. Quincampoix, et al., On representation formulas for Hamilton Jacobi’s equations related to calculus of variations problems. Topol. Methods Nonlinear Anal. 20 (2002) 85–118. [Google Scholar]
- R.T. Rockafellar, Convex analysis. Princeton University Press (2015). [Google Scholar]
- R. Vinter, Optimal control. Springer Science & Business Media (2010). [Google Scholar]
- R. Vinter and P. Wolenski, Hamilton-Jacobi theory for optimal control problems with data measurable in time. SIAM J. Control Optim. 28 (1990) 1404–1419. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.