Open Access
Issue
ESAIM: COCV
Volume 26, 2020
Article Number 75
Number of page(s) 22
DOI https://doi.org/10.1051/cocv/2019062
Published online 30 September 2020
  1. V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Translated from the Russian by V. M. Volosov. Contemporary Soviet Mathematics, Consultants Bureau, New York (1987). [Google Scholar]
  2. K. Ammari and E. Crépeau, Feedback stabilization and boundary controllability of the Korteweg–de Vries equation on a star-shaped network. SIAM J. Control Optim. 56 (2018) 1620–1639. [Google Scholar]
  3. F.D. Araruna, E. Cerpa, A. Mercado and M.C. Santos, Internal null controllability of a linear Schrödinger-KdV system on a bounded interval. J. Differ. Equ. 260 (2016) 653–687. [Google Scholar]
  4. J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York (1976). [Google Scholar]
  5. R.A. Capistrano-Filho, A.F. Pazoto and L. Rosier, Internal controllability of the Korteweg–de Vries equation on a bounded domain. ESAIM: COCV 21 (2015) 1076–1107. [CrossRef] [EDP Sciences] [Google Scholar]
  6. R.A. Capistrano-Filho, F.A. Gallego and A.F. Pazoto, Neumann boundary controllability of the Gear-Grimshaw system with critical size restrictions on the spatial domain. Z. Angew. Math. Phys. 67 (2016) 109. [Google Scholar]
  7. R.A. Capistrano-Filho, F.A. Gallego and A.F. Pazoto, Boundary controllability of a nonlinear coupled system of two Korteweg–de Vries equations with critical size restrictions on the spatial domain. Math. Control Signals Syst. 29 (2017) 6. [CrossRef] [Google Scholar]
  8. E. Cerpa and A.F. Pazoto, A note on the paper “On the controllability of a coupled system of two Korteweg-de Vries equations” [mr2561938]. Commun. Contemp. Math. 13 (2011) 183–189. [CrossRef] [Google Scholar]
  9. E. Cerpa, E. Crépeau and C. Moreno, On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network. IMA J. Math. Control Inform. 37 (2020) 226–240. [Google Scholar]
  10. J.-M. Coron and J.-P. Guilleron, Control of three heat equations coupled with two cubic nonlinearities. SIAM J. Control Optim. 55 (2017) 989–1019. [Google Scholar]
  11. J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term. SIAM J. Control Optim. 48 (2010) 5629–5653. [Google Scholar]
  12. A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. In Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  13. X. Geng, H. Ren and G. He, Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation. Phys. Rev. E 79 (2009) 056602. [Google Scholar]
  14. O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60 (2008) 61–100. [CrossRef] [Google Scholar]
  15. R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85 (1981) 407–408. [Google Scholar]
  16. C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35 (2010) 707–744. [Google Scholar]
  17. S. Micu, J.H. Ortega and A.F. Pazoto, On the controllability of a coupled system of two Korteweg-de Vries equations. Commun. Contemp. Math. 11 (2009) 799–827. [CrossRef] [Google Scholar]
  18. S. Micu, J.H. Ortega, L. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems. Discrete Contin. Dyn. Syst. 24 (2009) 273–313. [Google Scholar]
  19. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences] [Google Scholar]
  20. D.L. Russell and B.Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659–676. [Google Scholar]
  21. D.L. Russell and B.Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Satsuma and R. Hirota, A coupled KdV equation is one case of the four-reduction of the KP hierarchy. J. Phys. Soc. Jpn. 51 (1982) 3390–3397. [CrossRef] [Google Scholar]
  23. L. Xue, Q.P. Liu and D. Wang, A generalized Hirota-Satsuma coupled KdV system: Darboux transformations and reductions. J. Math. Phys. 57 (2016) 083506. [Google Scholar]
  24. C. Zhang, Internal controllability of systems of semilinear coupled one-dimensional wave equations with one control. SIAM J. Control Optim. 56 (2018) 3092–3127. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.