Open Access
Volume 26, 2020
Article Number 99
Number of page(s) 33
Published online 10 December 2020
  1. A.A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). [CrossRef] [Google Scholar]
  2. A.A. Agrachev, G. Stefani and P. Zezza, An invariant second variation in optimal control. Internat. J. Control 71 (1998) 689–7158. [CrossRef] [Google Scholar]
  3. A.A. Agrachev, G. Stefani and P. Zezza, Strong minima in optimal control. Proc. Steklov Inst. Math. 220 (1998) 4–26. translation from Tr. Mat. Inst. Steklova 220 (1998) 8–22. [Google Scholar]
  4. A.A. Agrachev, G. Stefani and P. Zezza, Strong optimality for a bang-bang trajectory. SIAM J. Control Optim. 41 (2002) 991–1014. [Google Scholar]
  5. B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis and J.-P. Gauthier, The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4 (2008) 10. [Google Scholar]
  6. N. Boizot and O. Oukacha, Consumption minimisation for an academic vehicle. Optim. Control Appl. Methods 41 (2020) 1001–1370. [Google Scholar]
  7. Z. Chen, J.-B. Caillau and Y. Chitour, L1 minimization for mechanical systems. SIAM J. Control. Optim. 54 (2016) 1245–1265. [Google Scholar]
  8. Z. Chen, L1-optimality conditions for the circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy 126 (2016) 461–481. [Google Scholar]
  9. F.C. Chittaro and L. Poggiolini, Optimality conditions for extremals containing bang and inactivated arcs, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017). [Google Scholar]
  10. F.C. Chittaro and L. Poggiolini, Strong local optimality for generalized L1 optimal control problems. J. Optim. Theory Appl. 180 (2019) 207–234. [Google Scholar]
  11. F.C. Chittaro and G. Stefani, Singular extremals in multi–input time–optimal problem: a sufficient condition. Control and Cybernetics 39 (2010) 1029–1068. [Google Scholar]
  12. F.C. Chittaro and G. Stefani, Minimum-time strong optimality of a singular arc: The multi-input non involutive case. ESAIM: COCV 22 (2016) 786–810. [CrossRef] [EDP Sciences] [Google Scholar]
  13. F.H. Clarke, On the inverse function theorem. Pacific J. Math. 64 (1976) 97–102. [CrossRef] [Google Scholar]
  14. F.H. Clarke, Optimization and nonsmooth analysis, Unrev. reprinting of the orig., publ. by Wiley, Hoboken 1983. Montréal: Centre de Recherches Mathématiques, Université de Montréal (1989). [Google Scholar]
  15. M.R. Hestenes, Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York, New York (1966). [Google Scholar]
  16. R. Kipka and Yu. Ledyaev, Optimal control on manifolds: Optimality conditions via nonsmooth analysis. Commun. Appl. Anal. 18 (2014) 563–590. [Google Scholar]
  17. J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994). [CrossRef] [Google Scholar]
  18. M. Nagahara, D.E. Quevedo and D. Nesic̀, Maximum hands-off control: A paradigm of control effort minimization. IEEE Trans. Automat. Control 61 (2015) 735–747. [CrossRef] [Google Scholar]
  19. L. Poggiolini, On local state optimality of bang-bang extremals in a free horizon Bolza problem. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 64 (2006) 1–23. [Google Scholar]
  20. L. Poggiolini and G. Stefani, State-local optimality of a bang-bang trajectory: a Hamiltonian approach. Sys. Control Lett. 53 (2004) 269–279. [CrossRef] [Google Scholar]
  21. L. Poggiolini and M. Spadini, Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem. Mathematical Control Theory and Finance. Edited by A. Sarychev, A. Shiryaev, M. Guerra, and M. Grossinho. Springer Berlin Heidelberg, (2008) 337–357. [CrossRef] [Google Scholar]
  22. L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem. SIAM J. Control Optim. 49 (2011) 140–161. [Google Scholar]
  23. L. Poggiolini and G. Stefani, Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Sys. 17 (2011) 469–514. [CrossRef] [Google Scholar]
  24. L. Poggiolini and G. Stefani, On the minimum time problem for dodgem car-like bang-singular extremals, Large-Scale Scientific Computing, edited by I. Lirkov, S. Margenov, and J. Wasniewski. Vol. 7116 of Lecture Notes in Computer Science. Springer, Berlin/Heidelberg (2012) 147–154. [Google Scholar]
  25. L. Poggiolini and M. Spadini, Bang–bang trajectories with a double switching time in the minimum time problem. ESAIM: COCV 22 (2016) 688–709. [CrossRef] [EDP Sciences] [Google Scholar]
  26. I.M. Ross, Space trajectory optimization and L1-optimal control problems, Modern Astrodynamics, edited by P. Gurfil. Vol. 1 of Elsevier Astrodynamics Series, Butterworth-Heinemann (2006) 155–VIII. [Google Scholar]
  27. Y. Sakawa, Trajectory planning of a free-flying robot by using the optimal control. Optim. Control Appl. Methods 20 (1999) 235–248. [Google Scholar]
  28. G. Stefani, Strong optimality of singular trajectories, Geometric Control and Nonsmooth Analysis. Edited by F. Ancona, A. Bressan, P. Cannarsa, F. Clarke, and P. Wolenski. Vol. 76 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ (2008) 300–326. [CrossRef] [Google Scholar]
  29. G. Stefani and P. Zezza, Constrained regular LQ-control problems. SIAM J. Control Optim. 35 (1997) 876–900. [Google Scholar]
  30. G. Stefani and P. Zezza, Variational Methods in Imaging and Geometric Control, chapter A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I. De Gruyter (2016). [Google Scholar]
  31. H.J. Sussmann, A nonsmooth hybrid maximum principle. Stability and Stabilization of Nonlinear Systems. Edited by D. Aeyels, F. Lamnabhi-Lagarrigue, and A. van der Schaft. Springer, London (1999) 325–354. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.