Issue |
ESAIM: COCV
Volume 26, 2020
Special issue in honor of Enrique Zuazua's 60th birthday
|
|
---|---|---|
Article Number | 127 | |
Number of page(s) | 28 | |
DOI | https://doi.org/10.1051/cocv/2020081 | |
Published online | 17 December 2020 |
- B. Acciaio, J. Backhoff-Veraguas and R. Carmona, Extended mean field control problems: stochastic maximum principle and transport perspective. SIAM J. Control Optim. 57 (2019) 3666–3693. [Google Scholar]
- N. Agram and B. Øksendal, Stochastic control of memory mean-field processes. Appl. Math. Optim. 79 (2019) 181–204. [Google Scholar]
- B.D.O. Anderson and J.B. Moore, Optimal Control: Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, NJ (1989). [Google Scholar]
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. II. Birkhäuser Boston, Inc., Boston, MA (1993). [Google Scholar]
- A. Bensoussan, J. Frehse and P. Yam, Mean field games and mean field type control theory. Springer, New York (2013). [Google Scholar]
- F.J. Beutler, The operator theory of the pseudo-inverse. II. Unbounded operators with arbitrary range. J. Math. Anal. Appl. 10 (1965) 471–493. [Google Scholar]
- P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The master equation and the convergence problem in mean field games. Princeton University Press, Princeton, NJ (2019). [Google Scholar]
- R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications. I. Mean field FBSDEs, control, and games. Springer, Cham (2018). [Google Scholar]
- R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications. II. Mean field games with common noise and master equations. Springer, Cham (2018). [Google Scholar]
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992). [Google Scholar]
- D.A. Dawson, Stochastic evolution equations. Math. Biosci. 15 (1972) 287–316. [Google Scholar]
- R. Dumitrescu, B. Øksendal and A. Sulem, Stochastic control for mean-field stochastic partial differential equations with jumps. J. Optim. Theory Appl. 176 (2018) 559–584. [Google Scholar]
- G. Lance, E. Trélat and E. Zuazua, Shape turnpike for linear parabolic PDE models. Systems Control Lett. 142 (2020) 104733. [Google Scholar]
- X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. To appear in: Probab. Uncertain. Quant. Risk doi: 10.3934/mcrf.2020026 (2020). [PubMed] [Google Scholar]
- X. Li and J. Yong, Optimal control theory for infinite-dimensional systems. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1995). [Google Scholar]
- Q. Lü, Well-posedness of stochastic Riccati equations and closed-loop solvability for stochastic linear quadratic optimal control problems. J. Differ. Equ. 267 (2019) 180–227. [Google Scholar]
- Q. Lüand X. Zhang, General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer Briefs in Mathematics. Springer, Cham (2014). [Google Scholar]
- A. Porretta and E. Zuazua, Long time versus steady state optimal control. SIAM J. Control Optim. 51 (2013) 4242–4273. [Google Scholar]
- J. Sun, Mean-field stochastic linear quadratic optimal control problems: open-loop solvabilities. ESAIM: COCV 23 (2017) 1099–1127. [Google Scholar]
- J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control Optim. 54 (2016) 2274–2308. [Google Scholar]
- T. Suzuki, Mean field theories and dual variation. Atlantis Press, Paris (2015). [Google Scholar]
- M. Tang, Q. Meng and M. Wang, Forward and backward mean-field stochastic partial differential equation and optimal control. Chin. Ann. Math. Ser. B 40 (2019) 515–540. [Google Scholar]
- J. B. Walsh, An introduction to stochastic partial differential equations. École d’été de probabilités de Saint-Flour, XIV–1984, 265–439, Lecture Notes in Math., 1180. Springer, Berlin (1986). [Google Scholar]
- T. Wang, Necessary conditions in stochastic linear quadratic problems and their applications. J. Math. Anal. Appl. 469 (2019) 280–297. [Google Scholar]
- T. Wang, On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems. ESAIM: COCV 26 (2020) 41. [Google Scholar]
- Q. Wei, J. Yong and Z. Yu, Linear quadratic stochastic optimal control problems with operator coefficients: open-loop solutions. ESAIM: COCV 25 (2019) 17. [Google Scholar]
- J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809–2838. [Google Scholar]
- J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations–time-consistent solutions. Trans. Amer. Math. Soc. 369 (2017) 5467–5523. [Google Scholar]
- J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.