Free Access
Issue |
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
|
|
---|---|---|
Article Number | S1 | |
Number of page(s) | 32 | |
DOI | https://doi.org/10.1051/cocv/2018004 | |
Published online | 01 March 2021 |
- R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science (2003). [Google Scholar]
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press Oxford (2000). [Google Scholar]
- G. Anzellotti and M. Giaquinta, Existence of the displacements field for an elasto-plastic body subject to Hencky’s law and Von Mises yield condition. Manuscr. Math. 32 (1980) 101–136. [CrossRef] [Google Scholar]
- D.N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. [Google Scholar]
- J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Dover Books on Mathematics Series. Dover Publications (1984). [Google Scholar]
- C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. John Wiley and Sons (1984). [Google Scholar]
- S. Bartels and T. Roubiček Numerical approaches to thermally coupled perfect plasticity. Numer. Methods Part. Differ. Eq. 29 (2013) 1837–1863. [Google Scholar]
- S. Bartels, A. Mielke and T. Roubiček Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal. 50 (2012) 951–976. [Google Scholar]
- J.-M.E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chinese Ann. Math. Ser. B 32 (2011) 823–846. [Google Scholar]
- J.-F. Bonnans, J.C. Gilbert, C. Lemaréchal and C.A. Sagastizábal, Numerical Optimization, 2nd ed. Springer (2006). [Google Scholar]
- F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics (1991). [Google Scholar]
- C. Carstensen, Convergence of adaptive finite element methods in computational mechanics. Appl. Numer. Math. 59 (2009) 2119–2130. [Google Scholar]
- X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (2001) 1200–1216. [Google Scholar]
- G. Dal Maso An Introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
- G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic Evolution Problems for Linearly Elastic-perfectly Plastic Materials. Arch. Rational Mech. Anal. 180 (2006) 237–291. [Google Scholar]
- G. Dal Maso, A. Demyanov and A. DeSimone, Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117–134. [Google Scholar]
- A. Demyanov, Regularity of stresses in Prandtl–Reuss perfect plasticity. Calc. Variat. Part. Differ. Eq. 34 (2009) 23–72. [Google Scholar]
- P. Doktor and A. Ženišek, The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl. Math., Praha 51 (2006) 517–547. [Google Scholar]
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en phyisque. Dunod, Paris (1972). [Google Scholar]
- F. Ebobisse and B.D. Reddy, Some mathematical problems in perfect plasticity. Comput. Methods Appl. Mech. Eng. 193 (2004) 5071–5094. [Google Scholar]
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987). [Google Scholar]
- G.A. Francfort and A. Giacomini, Small-strain heterogeneous elastoplasticity revisited. Commun. Pure Appl. Math. 65 (2012) 1185–1241. [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (1998). [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes equations. Springer-Verlag (1986). [Google Scholar]
- R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer (1984). [Google Scholar]
- W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, 2nd ed. Springer, New York (2013). [Google Scholar]
- M. Hintermüller, Mesh independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems. ANZIAM J. 49 (2007) 1–38. [Google Scholar]
- M. Hintermüller and K. Kunisch, Total bounded variation regularization as bilaterally constrained optimization problem. SIAM J. Appl. Math. 64 (2004) 1311–1333. [Google Scholar]
- M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198–1221. [Google Scholar]
- M. Hintermüller and C.N. Rautenberg, A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22 (2012) 1224–1257. [Google Scholar]
- M. Hintermüller and S. Rösel, A duality-based path-following semismooth Newton method for elasto-plastic contact problems. J. Comput. Appl. Math. 292 (2016) 150–173. [Google Scholar]
- M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Program., Ser. B 171 (2004) 151–184. [Google Scholar]
- M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865–888. [Google Scholar]
- M. Hintermüller, C.N. Rautenberg and S. Rösel, Density of convex intersections and applications. Proc. R. Soc. A 473 (2017) 20160919. [Google Scholar]
- K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. Ser. A, Theory Methods 41 (2000) 591–616. [Google Scholar]
- C. Johnson, Existence theorems for plasticity problems. J. Math. Pure Appl. 55 (1976) 431–444. [Google Scholar]
- R. Kohn and R. Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10 (1983) 1–35. [Google Scholar]
- S. Li and W.K. Liu, Numerical simulations of strain localization in inelastic solids using mesh-free methods. Int. J. Numer. Methods Eng. 48 (2000) 1285–1309. [Google Scholar]
- A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Variat. Part. Differ. Eq. 22 (2005) 73–99. [Google Scholar]
- H. Matthies, Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim. 1 (1979) 145–160. [Google Scholar]
- A. Mielke and T. Roubiček, Rate-independent Systems. Springer (2015). [Google Scholar]
- U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. [Google Scholar]
- A. Needleman and V. Tvergaard, Analyses of plastic flow localization in metals. Appl. Mech. Rev. 45 (1992) S3–S18. [Google Scholar]
- J. T. Oden and N. Kikuchi, Contact Problems in Elasticity. Society for Industrial and Applied Mathematics (1988). [Google Scholar]
- R. Rannacher and F.-T. Suttmeier, A posteriori error control in finite element methods via duality techniques: application to perfect plasticity. Comput. Mech. 21 (1998) 123–133. [Google Scholar]
- S. Repin, Errors of finite element method for perfectly elasto-plastic problems. Math. Models Methods Appl. Sci. 06 (1996) 587–604. [Google Scholar]
- T. Roubiček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computerimplementation. SIAM J. Appl. Math. 76 (2016) 314–340. [Google Scholar]
- M. Sauter. Numerical Analysis of Algorithms for Infinitesimal Associated and Non-Associated Elasto-Plasticity. Ph.D. thesis, Karlsruher Institut für Technologie (2010). [Google Scholar]
- M. Sauter and C. Wieners, On the superlinear convergence in computational elasto-plasticity. Comput. Methods Appl. Mech. Eng. 200 (2011) 3646–3658. [Google Scholar]
- A. Schwarz, J. Schröder and G. Starke, Least-squares mixed finite elements for small strain elasto-viscoplasticity. Int. J. Numer. Methods Eng. 77 (2009) 1351–1370. [Google Scholar]
- J.C. Simo and T.J.R. Hughes, Computational Inelasticity. Springer-Verlag, Berlin (1998). [Google Scholar]
- F. Solombrino, Quasistatic evolution in perfect plasticity for general heterogeneous materials. Arch. Ration. Mech. Anal. 212 (2014) 283–330. [Google Scholar]
- G. Strang and R. Temam, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. [Google Scholar]
- P.-M. Suquet, Sur les équations de la plasticité: existence et régularité des solutions. J. Mec., Paris 20 (1981) 3–39. [Google Scholar]
- R. Temam, Mathematical Problems in Plasticity. Gauthier-Villars (1985). [Google Scholar]
- C. Wieners, Multigrid methods for Prandtl-Reuss plasticity. Numer. Linear Algebra Appl. 6 (1999) 457–478. [Google Scholar]
- C. Wieners. Nonlinear solution methods for infinitesimal perfect plasticity. Zeitsch. Angew. Math. Mech. 87 (2007) 643–660. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.