Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S30
Number of page(s) 32
DOI https://doi.org/10.1051/cocv/2020089
Published online 01 March 2021
  1. A.A. Agracev and R.V. Gamkrelidze, Exponential representation of flows and a chronological enumeration. Mat. Sb. (N.S.) 107 (1978) 467–532, 639. [Google Scholar]
  2. A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2019). [Google Scholar]
  3. A.A. Agrachev, Some open problems. In Geometric control theory and sub-Riemannian geometry. Vol. 5 of Springer INdAM Ser.. Springer, Cham (2014) 1–13. [Google Scholar]
  4. A.A. Agrachev, F. Boarotto and A. Lerario, Homotopically invisible singular curves. Calc. Var. Partial Differ. Equ. 56 (2017) 105. [Google Scholar]
  5. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Control Theory and Optimization, II. Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). [Google Scholar]
  6. A.A. Agrachev and A.V. Sarychev, Strong minimality of abnormal geodesics for 2-distributions. J. Dyn. Control Syst. 1 (1995) 139–176. [Google Scholar]
  7. A.A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 13 (1996) 635–690. [Google Scholar]
  8. F. Boarotto and A. Lerario, Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry. Commun. Anal. Geom. 25 (2017) 269–301. [Google Scholar]
  9. Y. Chitour, F. Jean and E. Trélat, Genericity results for singular curves. J. Differ. Geom. 73 (2006) 45–73. [Google Scholar]
  10. V. Gershkovich, On simplest Engel structures on 4-manifolds. In Dynamical systems and applications. Vol. 4 of World Sci. Ser. Appl. Anal. World Sci. Publ., River Edge, NJ (1995) 279–294. [Google Scholar]
  11. M.R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. Pacific J. Math. 1 (1951) 525–581. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Hirsch and G. Lacombe, Elements of functional analysis. Translated fromthe 1997 French original by Silvio Levy. Vol. 192 of Graduate Texts in Mathematics. Springer-Verlag, New York (1999). [Google Scholar]
  13. L. Hsu, Calculus of variations via the Griffiths formalism. J. Differ. Geom. 36 (1992) 551–589. [Google Scholar]
  14. W. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Am. Math. Soc. 118 (1995). [Google Scholar]
  15. R. Montgomery, Abnormal minimizers. SIAM J. Control Optim. 32 (1994) 1605–1620. [Google Scholar]
  16. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002). [Google Scholar]
  17. J. Moser, On the volume elements on a manifold. Trans. Am. Math. Soc. 120 (1965) 286–294. [Google Scholar]
  18. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York (1964). [Google Scholar]
  19. L. Rifford, Sub-Riemannian geometry and optimal transport. Springer Briefs in Mathematics. Springer, Cham (2014). [Google Scholar]
  20. A.V. Saryčev, Index of second variation of a control system. Mat. Sb. (N.S.) 113 (1980) 464–486. [Google Scholar]
  21. H.J. Sussmann, A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In Sub-Riemannian geometry. Vol. 144 of Progr. Math. Birkhäuser, Basel (1996) 341–364. [Google Scholar]
  22. E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Syst. 6 (2000) 511–541. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.