Free Access
Issue |
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
|
|
---|---|---|
Article Number | S19 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/cocv/2020069 | |
Published online | 01 March 2021 |
- R.J. Di Perna and P.L. Lions, Global weak solutions of Vlasov-Maxwell systems. Commun. Pure Appl. Math. 42 (1989) 729–757. [Google Scholar]
- S.S. Dragomir, Some Gronwall Type Inequalities and Applications. Nova Science Publishers (2003). [Google Scholar]
- O. Glass and D. Han-Kwan, On the controllability of the relativistic Vlasov-Maxwell system. J. de Math. Pures Appl. 103 (2015) 695–740. [Google Scholar]
- R.T. Glassey and J. Schaeffer, On the 'one and one-half dimensional' relativistic Vlasov–Maxwell system. Math. Methods Appl. Sci. 13 (1990) 169–179. [Google Scholar]
- R.T. Glassey and J. Schaeffer, The “two and one–half dimensional” relativistic Vlasov Maxwell system. Commun. Math. Phys. 185 (1997) 257–284. [Google Scholar]
- R.T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions: part I. Arch. Ration. Mech. Anal. 141 (1998) 331–354. [Google Scholar]
- R.T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions: part II. Arch. Ration. Mech. Anal. 141 (1998) 355–374. [Google Scholar]
- R.T. Glassey and W.A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Ration. Mech. Anal. 92 (1986) 59–90. [Google Scholar]
- T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58 (1975) 181–205. [Google Scholar]
- P. Knopf, Optimal control of a Vlasov–Poisson plasma by an external magnetic field. Cal. Variat. Part. Differ. Equ. 57 (2018) 134. [Google Scholar]
- P. Knopf and J. Weber, Optimal control of a Vlasov–Poisson plasma by fixed magnetic field coils. Appl. Math. Optim. 81 (2020) 961–988. [Google Scholar]
- M. Kunzinger, G. Rein, R. Steinbauer and G. Teschl, On classical solutions of the relativistic Vlasov-Klein-Gordon system. Electron. J. Differ. Equ. 2005 (2005) 1–17. [Google Scholar]
- T.T. Nguyen, T.V. Nguyen and W.A. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinet. Relat. Models 8 (2015) 53. [Google Scholar]
- G. Rein, Global weak solutions to the relativistic Vlasov-Maxwell system revisited. Commun. Math. Sci. 2 (2004) 145–158. [Google Scholar]
- S. Robinson, Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497–513. [Google Scholar]
- J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.