Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S12
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2020056
Published online 01 March 2021
  1. T. Başar, A. Bensoussan and S.P. Sethi, Differential games with mixed leadership: the open-loop solution. Appl. Math. Comput. 217 (2010) 972–979. [Google Scholar]
  2. T. Başar and G.J. Olsder, Dynamic Noncooperative Game Theory. SIAM Philadelphia (1999). [Google Scholar]
  3. M. Bardi and F.S. Priuli, Linear-quadratic N-person and mean-field games with ergodic cost. SIAM J. Control Optim. 52 (2014) 3022–3052. [Google Scholar]
  4. C.T. Bauch and D.J.D. Earn, Vaccination and the theory of games. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 13391–13394. [Google Scholar]
  5. D. Bauso and R. Pesenti, Team theory and person-by-person optimization with binary decisions. SIAM J. Control Optim. 50 (2012) 3011–3028. [Google Scholar]
  6. A. Bensoussan, M.H.M. Chau and S.C.P. Yam, Mean field games with a dominating player. Appl. Math. Optim. 74 (2016) 91–128. [Google Scholar]
  7. A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013). [Google Scholar]
  8. P.E. Caines, Mean field games, in Encyclopedia of Systems and Control, edited by T. Samad and J. Baillieul. Springer-Verlag, Berlin (2014). [Google Scholar]
  9. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705–2734. [Google Scholar]
  10. R. Carmona, F. Delarue and D. Lacker, Mean field games with common noise. Ann. Probab. 44 (2016) 3740–3803. [Google Scholar]
  11. R. Carmona and P. Wang, Finite state mean field games with major and minor players. Preprint arXiv:1610.05408 (2016). [Google Scholar]
  12. R. Carmona and X. Zhu, A probabilistic approach to mean field games with major and minor players. Ann. Appl. Probab. 26 (2016) 1535–1580. [Google Scholar]
  13. R. Couillet, S.M. Perlaza, H. Tembine and M. Debbah, Electrical vehicles in the smart grid: a mean field game analysis. IEEE. J. Sel. Area. Commun. 30 (2012) 1086–1096. [Google Scholar]
  14. D. Firoozi and P.E. Caines, Mean field game ε-Nash equilibria for partially observed optimal execution problems in finance, in Proceedings of the IEEE 55th Conference on Decision and Control. Las Vegas (2016) 268–275. [Google Scholar]
  15. G. Gnecco, M. Sanguineti and M. Gaggero, Suboptimal solutions to team optimization problems with stochastic information structure. SIAM J. Optimiz. 22 (2012) 212–243. [Google Scholar]
  16. T. Groves, Incentives in teams. Econometrica 41 (1973) 617–631. [Google Scholar]
  17. Y.C. Ho and K.C. Chu, Team decision theory and information structures in optimal control. Part I. IEEE Trans. Automat. Contr. 17 (1972) 15–22. [Google Scholar]
  18. J. Huang and M. Huang, Robust mean field linear-quadratic-Gaussian games with unknown L2 -disturbance. SIAM J. Control Optim. 55 (2017) 2811–2840. [Google Scholar]
  19. J. Huang and N. Li, Linear quadratic mean-field game for stochastic delayed systems. IEEE Trans. Automat. Contr. 63 (2018) 2722–2729. [Google Scholar]
  20. J. Huang, S. Wang and Z. Wu, Backward–forward linear–quadratic mean-field games with major and minor agents. Probab. Uncertain. Quant. Risk 1 (2016) 1–27. [Google Scholar]
  21. M. Huang, P.E. Caines and R.P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions, in Proceedings of 42nd IEEE International Conference on Decision and Control. Maui (2003) 98–103. [Google Scholar]
  22. M. Huang, P.E. Caines and R.P. Malhamé, Social optima in mean-field LQG control: centralized and decentralized strategies. IEEE Trans. Automat. Contr. 57 (2012) 1736–1751. [Google Scholar]
  23. M. Huang and S.L. Nguyen, Linear-quadratic mean field teams with a major agent, in Proceedings of IEEE 55th Conference on Decision and Control. Las Vegas (2016) 6958–6963. [Google Scholar]
  24. A.C. Kizilkale and R.P. Malhame, Collective target tracking mean field control for Markovian jump-driven models of electric water heating loads, in Proceedings of the 19th IFAC World Congress. Cape Town, South Africa (2014) 1867–1972. [Google Scholar]
  25. J. Lasry and P. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  26. T. Li and J. Zhang, Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans. Automat. Contr. 53 (2008) 1643–1660. [Google Scholar]
  27. Y.N. Lin, X.S. Jiang and W.H. Zhang, An open-loop Stackelberg strategy for the linear quadratic mean-field stochastic differential game. IEEE Trans. Automat. Contr. 64 (2019) 97–110. [Google Scholar]
  28. J. Ma and J. Yong, Forward–Backward Stochastic Differential Equations and their Applications. Springer-Verlag, Berlin (1999). [Google Scholar]
  29. S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Basar, Dependable demand response management in the smart grid: a Stackelberg game approach. IEEE Trans. Smart Grid. 4 (2013) 120–132. [Google Scholar]
  30. J. Marschak, Elements for a theory of teams. Manage. Sci. 1 (1955) 127–137. [Google Scholar]
  31. J. Moon and T. Başar, Linear quadratic mean field Stackelberg differential games. Automatica 97 (2018) 200–213. [CrossRef] [Google Scholar]
  32. S.L. Nguyen and M. Huang, Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim. 50 (2012) 2907–2937. [Google Scholar]
  33. M. Nourian and P.E. Caines, ϵ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51 (2013) 3302–3331. [Google Scholar]
  34. J. Shi, G. Wang and J. Xiong, Leader-follower stochastic differential game with asymmetric information and applications. Automatica 63 (2016) 60–73. [CrossRef] [Google Scholar]
  35. M. Simaan and J. Cruz, A Stackelberg solution for games with many players. IEEE Trans. Automat. Contr. 18 (1973) 322–324. [Google Scholar]
  36. H. Tembine, Q. Zhu and T. Başar, Risk-sensitive mean-field games. IEEE Trans. Automat. Contr. 59 (2014) 835–850. [Google Scholar]
  37. B. Wang and J. Zhang, Mean field games for large population multiagent systems with Markov jump parameters. SIAM J. Control Optim. 50 (2012) 2308–2334. [Google Scholar]
  38. B. Wang and J. Zhang, Hierarchical mean field games for multiagent systems with tracking-type costs: distributed ε-Stackelberg equilibria. IEEE Trans. Automat. Contr. 59 (2014) 2241–2247. [Google Scholar]
  39. B. Wang and J. Zhang, Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters. SIAM J. Control Optim. 55 (2017) 429–456. [Google Scholar]
  40. B. Wang and J. Huang, Social optima in robust mean field LQG control, in Proceedings of the 11th Asian Control Conference. Gold Coast, QLD (2017) 2089–2094. [Google Scholar]
  41. G.Y. Weintraub, C.L. Benkard and B.V. Roy, Markov perfect industry dynamics with many firms. Econometrica 76 (2008) 1375–1411. [Google Scholar]
  42. J. Yong, Linear forward–backward stochastic differential equations. Appl. Math. Optim. 39 (1999) 93–119. [Google Scholar]
  43. J. Yong, A leader-follower stochastic linear quadratic differential game. SIAM J. Control Optim. 41 (2002) 1015–1041. [Google Scholar]
  44. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.