Issue
ESAIM: COCV
Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 44
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2021044
Published online 11 May 2021
  1. Y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, Partial differential equation models in macroeconomics. Philo. Trans. R. Soc. A 372 (2014) 20130397. [Google Scholar]
  2. C. Alasseur, I.B. Tahar and A. Matoussi, An extended mean field game for storage in smart grids. J. Optim. Theory Appl. 2020 (2020) 1–27. [Google Scholar]
  3. P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance 9 (1999) 203–228. [Google Scholar]
  4. Basel Committee on Banking Supervision, Messages from the academic literature on risk measurement for the tradingbook (2011). [Google Scholar]
  5. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics. Springer-Verlag New York (2011). [Google Scholar]
  6. C. Bertucci, S. Vassilaras, J.-M. Lasry, G.S. Paschos, M. Debbah and P.-L. Lions, Transmit strategies for massive machine-type communications based on mean field games. In 2018 15th International Symposium on Wireless Communication Systems (ISWCS). IEEE (2018) 1–5. [Google Scholar]
  7. J.F. Bonnans, S. Hadikhanloo and L. Pfeiffer, Schauder estimates for a class of potential mean field games of controls. Appl. Math. Optim. 2019 (2019) 1–34. [Google Scholar]
  8. P. Cardaliaguet and C.-A. Lehalle, Mean field game of controls and an application to trade crowding. Math. Financial Econ. 12 (2018) 335–363. [Google Scholar]
  9. P. Cheridito and M. Kupper, Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14 (2011) 137–162. [Google Scholar]
  10. H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time. Walter de Gruyter (2011). [Google Scholar]
  11. N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015) 707–738. [Google Scholar]
  12. P.J. Graber and A. Bensoussan, Existence and uniqueness of solutions for Bertrand and Cournot mean field games. Appl. Math. Optim. 2015 (2015) 1–25. [Google Scholar]
  13. P.J. Graber, V. Ignazio and A. Neufeld, Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule. Preprint arXiv:2002.11055 (2020). [Google Scholar]
  14. O. Guéant, J.-M. Lasry and P.-L. Lions, Mean Field Games and Applications. Springer Berlin, Heidelberg (2011) 205–266. [Google Scholar]
  15. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252. [Google Scholar]
  16. M. Huang, R.P. Malhamé and P.E. Caines, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ε-nash equilibria. IEEE Trans. Autom. Control 52 (2007) 1560–1571. [Google Scholar]
  17. Z. Kobeissi, On classical solutions to the mean field game system of controls. Preprint arXiv:1904.11292 (2019). [Google Scholar]
  18. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. i–le cas stationnaire. Comp. Rendus Math. 343 (2006) 619–625. [Google Scholar]
  19. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. ii–horizon fini et contrôle optimal. Comp. Rendus Mathématique 343 (2006) 679–684. [Google Scholar]
  20. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [Google Scholar]
  21. J. Moon and T. Başar, Linear quadratic risk-sensitive and robust mean field games. IEEE Trans. Autom. Control 62 (2017) 1062–1077. [Google Scholar]
  22. L. Pfeiffer, Optimality conditions in variational form for non-linear constrained stochastic control problems. Math. Control Related Fields 10 (2020) 493–526. [Google Scholar]
  23. A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes. Math. Program. 125 (2010) 235–261. [Google Scholar]
  24. A. Ruszczyński and A. Shapiro, Conditional risk mappings. Math. Oper. Res. 31 (2006) 544–561. [Google Scholar]
  25. N. Saldi, T. Başar and M. Raginsky, Markov–Nash equilibria in mean-field games with discounted cost. SIAM J. Control Optim. 56 (2018) 4256–4287. [Google Scholar]
  26. A. Shapiro, Minimax and risk averse multistage stochastic programming. Eur. J. Oper. Res. 219 (2012) 719–726. Feature Clusters. [Google Scholar]
  27. H. Tembine, Q. Zhu and T. Başar, Risk-sensitive mean-field games. IEEE Trans. Autom. Control 59 (2014) 835–850. [Google Scholar]
  28. C. Villani, Optimal transport: Old and New. Springer Verlag (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.