Open Access
Volume 27, 2021
Article Number 90
Number of page(s) 35
Published online 26 August 2021
  1. J.M. Ball, Singularities and computation of minimizers for variational problems. Foundations of computational mathematics. London Math. Soc. Lecture Note Ser., 284, Cambridge Univ. Press, Cambridge (2001) 1–20. [Google Scholar]
  2. J.M. Ball, Progress and puzzles in Nonlinear Elasticity. Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Springer (2010). [Google Scholar]
  3. C. Bennet and R. Sharpley, Interpolation of Operators. Academic Press (1988) 129. [Google Scholar]
  4. D. Campbell, Diffeomorphic approximation of Planar Sobolev Homeomorphisms in Orlicz-Sobolev spaces. J. Funct. Anal. 273 (2017) 125–205. [Google Scholar]
  5. P. Cavaliere, A. Cianchi, L. Pick and L. Slavíková, Norms supporting the Lebesgue differentiation theorem. Commun. Contemp. Math. 20 (2018) 1–33. [Google Scholar]
  6. G. De Philippis and A. Pratelli, The closure of planar diffeomorphisms in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Lin eaire 37 (2020) 181–224. [Google Scholar]
  7. S. Hencl and P. Koskela, Lectures on Mappings of finite distortion. Vol. 2096 of: Lecture Notes in Mathematics, Springer (2014). [CrossRef] [Google Scholar]
  8. S. Hencl and A. Pratelli, Diffeomorphic approximation of W1,1 planar Sobolev homeomorphisms. J. Eur. Math. Soc. (JEMS) 20 (2018) 597–656. [Google Scholar]
  9. T. Iwaniec, L.V. Kovalev and J. Onninen, Diffeomorphic Approximation of Sobolev Homeomorphisms. Arch. Ratl. Mech. Anal. 201 (2011) 1047–1067. [Google Scholar]
  10. T. Iwaniec, L.V. Kovalev and J. Onninen, Hopf Differentials and Smoothing Sobolev Homeomorphisms. Int. Math. Res. Notices 14 (2012) 3256–3277. [Google Scholar]
  11. C. Mora-Corral and A. Pratelli, Approximation of piece-wise Affine Homeomorphisms by Diffeomorphisms. J. Geom. Anal. 24 (2014) 1398–1424. [Google Scholar]
  12. A. Pratelli, On the bi-Sobolev planar homeomorphisms and their approximation. Nonlinear Anal. 154 (2017) 258–268. [Google Scholar]
  13. A. Pratelli and E. Radici, Approximation of planar BV homeomorphisms by diffeomorphisms. J. Funct. Anal. 276 (2019) 659–686. [Google Scholar]
  14. A. Pratelli and E. Radici, On the planar minimal BV extension problems. Rend. Lincei Mat. Appl. 29 (2018) 511–555. [Google Scholar]
  15. E. Radici, A planar Sobolev extension theorem for piece-wise linear homeomorphisms. Pacific J. Math. 239 (2016) 405–418. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.