Free Access
Volume 27, 2021
Article Number 23
Number of page(s) 24
Published online 26 March 2021
  1. K. Anthony, U. Essmann, A. Seeger and H. Trauble, Disclinations and the Cosserat-Continuum with Incompatible Rotations, volume Mechanics of Generalized Continua, Proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967. Springer-Verlag Berlin Heidelberg (1968) 355–358. [Google Scholar]
  2. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ratl. Mech. Anal. 86 (1984) 125–145. [Google Scholar]
  3. M.P. Ariza and M. Ortiz, Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ratl. Mech. Anal. 178 (2005) 149–226. [Google Scholar]
  4. J. Braun, M. Buze and C. Ortner, The effect of crystal symmetries on the locality of screw dislocation cores. SIAM J. Math. Anal. 51 (2019) 1108–1136. [Google Scholar]
  5. J. Ball, P. Cesana and P. Hambly, A probabilistic model for martensitic avalanches. MATEC Web Conf . 33 (2015) 1–6. [Google Scholar]
  6. K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press (2003). [Google Scholar]
  7. M. Buze, T. Hudson and C. Ortner, Analysis of an atomistic model for anti-plane fracture. Math. Models Methods Appl. Sci. 29 (2019) 2469–2521. [Google Scholar]
  8. J. Ball and R. James, Fine phase mixtures as minimizers of eenergies. Arch. Ration. Mech. Anal. 100 (1987) 13–52. [Google Scholar]
  9. P. Cesana, F. Della Porta, A. Rueland, C. Zillinger and B. Zwicknagl, Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers. Arch. Ratl. Mech. Anal. 237 (2020) 383–445. [Google Scholar]
  10. P. Cesana and P. Hambly, A probabilistic model for interfaces in a martensitic phase transition. Preprint (2018). [Google Scholar]
  11. P. Cesana, M. Porta and T. Lookman, Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids 72 (2014) 174–192. [Google Scholar]
  12. S. Conti and B. Schweizer, Rigidity and gamma convergence for solid-solid phase transitions with SO(2) invariance. Commun. Pure Appl. Math. 59 (2006) 830–868. [Google Scholar]
  13. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Heidelberg, 2nd edition (2008). [Google Scholar]
  14. G. Dal Maso An Introduction to Γ-Convergence. Birkhäuser Verlag, Boston (1993). [CrossRef] [Google Scholar]
  15. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  16. R. de Wit Linear theory of static disclinations. Vol. 317 of Fundamental Aspects of Dislocation Theory, edited by J.A. Simmons, R. de Wit, and R. Bullough. Nat. Bur. Stand. (US), Spec. Publ. (1970) 651–673. [Google Scholar]
  17. R. de Wit Theory of disclinations: II. continuous and discrete disclinations in anisotropic elasticity. J. Res. Natl. Bureau Stand. A 77A (1973). [Google Scholar]
  18. R. de Wit Theory of disclinations: III. continuous and discrete disclinations in isotropic elasticity. J. Res. Natl. Bureau Stand. A 73A (1973). [Google Scholar]
  19. R. de Wit Theory of disclinations: IV. straight disclinations. J. Res. Natl. Bureau Stand. A 77A (1973). [Google Scholar]
  20. V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ratl. Mech. Anal. 222 (2016) 1217–1268. [Google Scholar]
  21. I. Ekeland and R. Temam, Vol. 28 of Convex Analysis and Variational Problems. SIAM (1999). [CrossRef] [Google Scholar]
  22. D. Essmann and H. Träuble, The direct observation of individual flux lines in type ii superconductors. Phys. Lett. 24A (1967). [Google Scholar]
  23. G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of non linear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461—1506. [Google Scholar]
  24. E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284–305. [Google Scholar]
  25. K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano and Y. Kawamura, Orientation dependence of the deformation kink band formation behavior in Zn single crystal. Int. J. Plasticity 77 (2016) 174–191. [Google Scholar]
  26. K. Hagihara, T. Okamoto, H. Izuno, M. Yamasaki, M. Matsushita, T. Nakano and Y. Kawamura, Plastic deformation behavior of 10H-type synchronized LPSO phase in a Mg-Zn-Y system. Acta Mater. 109 (2016) 90–102. [Google Scholar]
  27. T. Hudson and C. Ortner, Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ratl. Mech. Anal. 213 (2014) 887–929. [Google Scholar]
  28. T. Hudson and C. Ortner, Analysis of stable screw dislocation configurations in an antiplane lattice model. SIAM J. Math. Anal. 47 (2015) 291–320. [Google Scholar]
  29. T. Inamura, H. Hosoda and S. Miyazaki, Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy. Philos. Mag. 93 (2013) 618–634. [Google Scholar]
  30. T. Inamura, M. Li, M. Tahara and H. Hosoda, Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy. Acta Mater. 124 (2017) 351–359. [Google Scholar]
  31. T. Inamura, Geometry of kink microstructure analysed by rank-1 connection. Acta Mater. 173 (2019) 270–280. [Google Scholar]
  32. Y. Kitano and K. Kifune, HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy 39 (1991) 279–286. [Google Scholar]
  33. R. Kupferman and C. Maor, Variational convergence of discrete geometrically-incompatible elastic models. Calc. Var. Partial Differ. Equ. 57 (2018). [Google Scholar]
  34. M. Lazar, Wedge disclination in the field theory of elastoplasticity. Phys. Lett. A 311 (2003) 416–425. [Google Scholar]
  35. G. Lazzaroni, M. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures. Commun. Math. Sci. 13 (2015) 1105–1133. [Google Scholar]
  36. X.W. Lei and A. Nakatani, A deformation mechanism for ridge-shaped kink structure in layered solids. J. Appl. Mech. 82 (2015) 071016. [Google Scholar]
  37. C. Manolikas and S. Amelinckx, Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. Phys. Stat. Sol. 60 (1980) 607–617. [Google Scholar]
  38. F.R.N. Nabarro, Theory of crystal dislocations. International Series of Monographs on Physics. Oxford: Clarendon Press (1967). [Google Scholar]
  39. M. Porta and T. Lookman, Heterogeneity and phase transformation in materials: energy minimization, iterative methods and geometric nonlinearity. Acta Mater. 61 (2013) 5311–5340. [Google Scholar]
  40. M. Ponsiglione, Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39 (2007) 449–469. [Google Scholar]
  41. A.E. Romanov and V.I. Vladimirov, in Vol. 9 of Dislocations in solids, edited by F.R.N. Nabarro. North-Holland, Amsterdam (1992) 191. [Google Scholar]
  42. S. Seung, and R. Nelson, Defects in flexible membranes with crystalline order. Phys. Rev. A 38 (1988) 1005. [Google Scholar]
  43. H. Träuble and D. Essmann, Fehler im flussliniengitter von supraleitern zweiter art. Phys. Stat. Sol. 25 (1968). [Google Scholar]
  44. V. Volterra, Sur l’équilibre des corps élastiques multiplement connexes. Ann. scientifiques de l’École Normale Supérieure 24 (1907) 401–517. [Google Scholar]
  45. C. Zhang and A. Acharya, On the relevance of generalized disclinations in defect mechanics. J. Mech. Phys. Solids 119 (2018) 188–223. [Google Scholar]
  46. L.M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Lecture Notes in Physics Monographs. Springer (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.