Issue
ESAIM: COCV
Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 67
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2021061
Published online 28 June 2021
  1. F. Alabau-Boussouira, V. Perrollaz and L. Rosier, Finite-time stabilization of a network of strings. Math. Control Relat. fields 5 (2015) 721–742. [Google Scholar]
  2. M.K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterogenous Media 1 (2006) 295–314. [Google Scholar]
  3. M. Brokate, Necessary optimality conditions for the control of semilinear hyperbolic boundary value problems. SIAM J. Control Optim. 25 (1987) 1353–1369. [Google Scholar]
  4. R. Burlacu, H. Egger, M. Groß, A. Martin, M.E. Pfetsch, L. Schewe, M. Sirvent and M. Skutella, Maximizing the storage capacity of gas networks: a global MINLP approach. Optim. Eng. 20 (2019) 543–573. [Google Scholar]
  5. J. Cézar de Almeida, J.A. Velásquez and R. Barbieri, A methodology for calculating the natural gas compressibility factor for a distribution network. Petroleum Sci. Technol. 32 (2014) 2616–2624. [Google Scholar]
  6. R. Dager and E. Zuazua, Controllability of star-shaped networks of strings. Comptes Rendus de l Academie des Sciences - Series I – Mathematics 332 (2001) 621–626. [Google Scholar]
  7. H. Egger and T. Kugler, Damped wave systems on networks: exponential stability and uniform approximations. Numerische Mathematik 138 (2018) 839–867. [Google Scholar]
  8. M. Gugat, M. Dick and G. Leugering, A strict H1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numer. Algebra Control Optim. 1 (2011) 225–244. [Google Scholar]
  9. M. Gugat and S. Gerster, On the Limits of Stabilizability for Networks of Strings. Syst. Control Lett. 131 (2019) 104494. [Google Scholar]
  10. M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws, in Constrained optimization and optimal control for partial differential equations. Springer, Basel (2012) 123–46. [Google Scholar]
  11. M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM: COCV 17 (2011) 28–51. [EDP Sciences] [Google Scholar]
  12. M. Gugat, M. Hirsch-Dick and G. Leugering, Gas flow in fan-shaped networks: classical solutions and feedback stabilization. SIAM J. Control Optim. 49 (2011) 2101–2117. [Google Scholar]
  13. M. Gugat, G. Leugering, S. Tamasoiu, K. Wang, H2-stabilization of the Isothermal Euler equations: a Lyapunov function approach. Chin. Ann. Math. Ser. B 33 (2012) 479–500. [Google Scholar]
  14. M. Gugat, L. Rosier and V. Perrolaz, Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms. J. Evol. Equ. (2018). [Google Scholar]
  15. M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization. Netw. Heterogen. Media 5 (2010) 299–314. [Google Scholar]
  16. M. Gugat and M. Tucsnak, An example for the switching delay feedback stabilization of an infinite dimensional system: the boundary stabilization of a string. Syst. Control Lett. 60 (2011) 226–233. [Google Scholar]
  17. M. Gugat and S. Ulbrich, On Lipschitz solutions of initial boundary value problems for balance laws. Math. Models Methods Appl. Sci. 28 (2018) 921–951. [Google Scholar]
  18. M. Hintermüller and N. Strogies, Identification of the friction function in a semilinear system for gas transport through a network. Optim. Methods Softw. 35 (2019) 576–617. [Google Scholar]
  19. T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS, Springfiled, USA (2010). [Google Scholar]
  20. V. Perrollaz and L. Rosier, Finite-time stabilization of hyperbolic systems over a bounded interval. 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations, Paris, France, September 25–27 (2013). [Google Scholar]
  21. A. Polyakov, J.-M. Coron and L. Rosier, Finite-time control for linear evolution equation in Hilbert space. IEEE Trans. Autom. Control Inst. Electr. Electr. Eng. 63 (2018) 3143–3150. [Google Scholar]
  22. M. Schmidt, M.C. Steinbach and B. Willert, High detail stationary optimization models for gas networks – Part I: Model components. Optim. Eng. 16 (2015) 131–164. [Google Scholar]
  23. J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks. SIAM J. Control Optim. 48 (2009) 2771–2797. [Google Scholar]
  24. E. Zuazua, Control and stabilization of waves on 1-d networks, in Modelling and Optimisation of Flows on Networks: Cetraro, Italy 2009, edited by B. Piccoli and M. Rascle. Springer, Berlin, Heidelberg (2013) 463–493. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.