Open Access
Volume 27, 2021
Article Number 95
Number of page(s) 58
Published online 06 October 2021
  1. R. Adams and J. Fournier, Sobolev Spaces. Academic Press, London (2003). [Google Scholar]
  2. S. Alama, L. Bronsard and X. Lamy, Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch. Ratl. Mech. Anal. 222 (2016) 427–450. [Google Scholar]
  3. S. Alama, L. Bronsard and X. Lamy, Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime. J. Nonlinear Sci. 2018 (2018) 1–23. [Google Scholar]
  4. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization. 1st Edition. Elsevier (2015). [Google Scholar]
  5. T.P. Bennett, G. D’Alessandro and K.R. Daly, Multiscale models of colloidal dispersion of particles in nematic liquid crystals. Phys. Rev. E 90 (2014) 062505. [Google Scholar]
  6. L. Berlyland, D. Cioranescu and D. Golovaty, Homogenization of Ginzburg-Landau model for a nematic liquid crystal with inclusions. J. de mathematiques pures et appliquées 84 (2016) 97–136. [Google Scholar]
  7. M. Buscaglia, T. Bellini, C. Chiccoli, F. Mantegazza, P. Pasini, M. Rotunno and C. Zannoni, Phys. Rev. E 74 (2006) 011706. [Google Scholar]
  8. M.C. Calderer, A. DeSimone, D. Golovaty and A. Panchenko, An effective model for nematic liquid crystal composites with ferromagnetic inclusions. SIAM J. Appl. Math. 74 (2014) 237–262. [Google Scholar]
  9. G. Canevari, M. Ramaswamy and A. Majumdar, Radial symmetry on three-dimensional shells in the Landau-de Gennes theory. Physica D 314 (2016) 18–34. [Google Scholar]
  10. G. Canevari, A. Segatti and M.M. Veneroni, Morse’s index formula in VMO on compact manifold with boundary. J. Funct. Anal. 269 (2015) 3043–3082. [Google Scholar]
  11. G. Canevari and A. Segatti, Defects in Nematic Shells: a Γ-convergence discrete-to-continuum approach. Arch. Ratl. Mech. Anal. 229 (2018) 125–186. [Google Scholar]
  12. G. Canevari and A. Segatti, Variational analysis of nematic shells. Trends in Applications of Mathematics to Mechanics. Springer-INdAM series 27 (2018) 81–102. [Google Scholar]
  13. G. Canevari and A.D. Zarnescu, Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation. Math. Models Methods Appl. Sci. (2019) 10.1142/S0218202520500086. [Google Scholar]
  14. G. Canevari and A.D. Zarnescu, Polydispersity and surface energy strength in nematic colloids. Math. Eng. 2 (2020) 290–312. [Google Scholar]
  15. D. Cioranescu and P. Donato, An introduction to homogenization. Oxford Lecture Series in Mathematics and Its Applications (1999). [Google Scholar]
  16. P.G. De Gennes and J. Prost, The Physics of Liquid Crystals. International series of monographs on physics. Clarendon Press (1993). [Google Scholar]
  17. J. Griepentrog, W. Höppner, H.-C. Kaiser and J. Rehberg, A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube. Note di Matematica 28 (2008) 177–193. [Google Scholar]
  18. D. Jayasri, M. Ravnik and Š. Žumer, Shape tuning the colloidal assemblies in nematic liquid crystals. Soft Matter. 8 (2012) 1657. [Google Scholar]
  19. L. Longa, D. Montelesan and H.R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liquid Crys. 2 (1987). [Google Scholar]
  20. N.J. Mottram and C. Newton, Introduction to Q-tensortheory (2014). Preprint arXiv:1409.3542. [Google Scholar]
  21. I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik and Š. Žumer, Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313 (2006) 954. [CrossRef] [PubMed] [Google Scholar]
  22. M. Ravnik, M. Škarabot, Š. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman and I. Muševič. Entangled Nematic Colloidal Dimers and Wires. Phys. Rev. Lett. 99 (2007) 247801. [Google Scholar]
  23. F. Serra, S. Eaton, R. Cerbino, M. Buscaglia, G. Cerullo, R. Osellame and T. Bellini, Liquid crystals: nematic liquid crystals embedded in cubic microlattices: memory effects and bistable pixels (Adv. Funct. Mater. 32/2013). Adv. Funct. Mater. 23 (2013) 3990. [Google Scholar]
  24. F. Serra, K.C. Vishnubhatla, M. Buscaglia, R. Cerbino, R. Osellame, G. Cerullo and T. Bellini, Soft Matter 7 (2011) 10945. [Google Scholar]
  25. Y. Wang, G. Canevari and A. Majumdar, Order reconstruction for nematics on squares with isotropic inclusions: a Landau-de Gennes study. Preprint arXiv:1803.02597 (2018). [Google Scholar]
  26. W.P. Ziemer, Weakly differentiable functions. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.