Open Access
Volume 27, 2021
Article Number 55
Number of page(s) 14
Published online 04 June 2021
  1. V. Ayala and A. Da Silva, To appear Dynamics of endomorphisms of Lie groups and their topological entropy.. [Google Scholar]
  2. V. Ayala, A. Da Silva, J. Philippe and G. Zsigmond, Control sets of linear systems on semi-simple Lie groups. J. Diff. Equ. 269 (2020) 449–466. [Google Scholar]
  3. V. Ayala, A. Da Silva and G. Zsigmond, Control sets of linear systems on Lie groups. Nonlinear Differ. Equ. Appl. 24 (2017) 7–15. [Google Scholar]
  4. R. Bowen, Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153 (1971) 401–414. [Google Scholar]
  5. F. Colonius, J.A.N. Cossich and A. Santana, Controllability properties and invariance pressure for linear discrete-time systems, J. Dyn. Differ. Equ. (2021), DOI 10.1007/s10884-021-09966-4. [Google Scholar]
  6. F. Colonius and C. Kawan, Invariance entropy for control systems. SIAM J. Control Optim. 48 (2009) 1701–1721. [Google Scholar]
  7. A. Da Silva, Outer invariance entropy for linear systems on Lie groups. SIAM J. Control Optim. 52 (2014) 3917–3934. [Google Scholar]
  8. A. Da Silva, Controllability of linear systems on solvable Lie groups. SIAM J. Control Optim. 54 (2016) 372–390. [Google Scholar]
  9. A. Da Silva and C. Kawan, Invariance entropy of hyperbolic control sets. Discr. Continu. Dyn. Syst. 36 (2016) 97–136. [Google Scholar]
  10. A. Da Silva and C. Kawan, Lyapunov exponents and partial hyperbolicity of chain control sets on flag manifolds. Israel J. Math. 232 (2019) 947–1000. [Google Scholar]
  11. C. Kawan, Invariance entropy of control sets. SIAM J. Control Optim. 49 (2011) 732–751. [Google Scholar]
  12. C. Kawan, Invariance Entropy for Deterministic Control Systems. An Introduction. Vol. 2089 of LNM. Springer, Berlin (2013). [Google Scholar]
  13. A. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser (2002). [Google Scholar]
  14. G. Nair, R.J. Evans, I. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization. IEEE Trans. Aut. Control 49 (2004) 1585–1597. [Google Scholar]
  15. L. San Martin, Grupos de Lie, Editora Unicamp, 2016 Campinas. [Google Scholar]
  16. E. Sontag, Mathematical Control Theory. Deterministic Finite Dimensional Systems, 2nd edn. Springer-Verlag, New York (1998). [Google Scholar]
  17. P. Walters, An Introduction to Ergodic Theory. Springer-Verlag (1982). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.