Open Access
Issue |
ESAIM: COCV
Volume 27, 2021
|
|
---|---|---|
Article Number | 34 | |
Number of page(s) | 30 | |
DOI | https://doi.org/10.1051/cocv/2021033 | |
Published online | 30 April 2021 |
- E. Akhmetgaliyev, C.-Y. Kao and B. Osting, Computational methods for extremal Steklov problems. SIAM J. Cont. Optim. 55 (2017) 1226–1240 [Google Scholar]
- W. Alhejaili and C.-Y. Kao, Maximal convex combinations of sequential Steklov eigenvalues. J. Scientific Computing 79 (2019) 2006–2026 [Google Scholar]
- P.R.S Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012) 235–257 [Google Scholar]
- P.R.S. Antunes and E. Oudet, Numerical minimization of Dirichlet Laplacian eigenvalues of four-dimensional geometries. SIAM J. Sci. Comput. 39 (2017) B508–B521 [Google Scholar]
- B. Bogosel and E. Oudet, Qualitative and numerical analysis of a spectral problem with perimeter constraint. SIAM J. Cont. Optim. 54 (2016) 317–340 [Google Scholar]
- B. Bogosel, D. Bucur and A. Giacomini, Optimal shapes maximizing the Steklov eigenvalues. SIAM J. Math. Anal. 49 (2017) 1645–1680 [Google Scholar]
- K. Brown, Min-energy configurations of electrons on a sphere (2020). http://mathpages.com/home/kmath005/kmath005.htm [Google Scholar]
- R.H. Byrd, J. Nocedal and R.A. Waltz, Knitro: An integrated package for nonlinear optimization, in Large-Scale Nonlinear Optimization. Springer (2006) 35–59 [Google Scholar]
- M. Dambrine, D. Kateb and J. Lamboley, An extremal eigenvalue problem for the Wentzell–Laplace operator. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 33 (2016) 409–445 [Google Scholar]
- B. Dittmar, Sums of reciprocal Stekloff eigenvalues. Math. Nachr. 268 (2004) 44–49 [Google Scholar]
- A. El Soufi, S. Ilias, et al., Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold. Ill. J. Math. 51 (2007) 645–666 [Google Scholar]
- X.-Q. Fan, L.-F. Tam and C. Yu, Extremal problems for Steklov eigenvalues on annuli. Cal. Var. Part. Diff. Equ. 54 (2014) 1043–1059 [Google Scholar]
- M. Fekete, über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten. Math. Z. 17 (1923) 228–249 [Google Scholar]
- A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry and minimal surfaces. Adv. Math. 226 (2011) 4011–4030 [Google Scholar]
- A. Fraser and R. Schoen, Minimal surfaces and eigenvalue problems. Contemp. Math. (2013) 105–121. doi:10.1090/conm/ 599/11927. [Google Scholar]
- A. Fraserand R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball. Invent Math. 203 (2015) 823–890 [Google Scholar]
- A. Fraser and R. Schoen, Some results on higher eigenvalue optimization. Cal. Var. Part. Diff. Equ. 59 (2020) 1–22 [Google Scholar]
- F. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory. American Mathematical Society (1999) [Google Scholar]
- A. Girouard and J. Lagacé, Large Steklov eigenvalues via homogenisation on manifolds. Preprint, arXiv:2004.04044 (2020). [Google Scholar]
- A. Girouard, R.S. Laugesen and B.A. Siudeja, Steklov eigenvalues and quasiconformal maps of simply connected planar domains. Arch. Rat. Mech. Anal. 219 (2016) 903–936 [Google Scholar]
- A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announ. Math. Sci. 19 (2012) 77–85 [Google Scholar]
- A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem. J. Spectr. Theory 7 (2017) 321–359 [Google Scholar]
- P. Henrici, Applied and Computational Complex Analysis. John Wiley & Sons (1986) [Google Scholar]
- M. Jin, X. Gu, Y. He and Y. Wang, Conformal Geometry. Springer International Publishing (2018) [Google Scholar]
- C.-Y. Kao, R. Lai and B. Osting, Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces. ESAIM: COCV 23 (2017) 685–720 [CrossRef] [EDP Sciences] [Google Scholar]
- M. Karpukhin, Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds. Electron. Res. Announ. Math. Sci. 24 (2017) 100–109 [Google Scholar]
- P.D. Lamberti and L. Provenzano, Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues, in Trends in Mathematics. Springer International Publishing (2015) 171–178 [Google Scholar]
- M. Li, Free boundary minimal surfaces in the unit ball: recent advances and open questions. Preprint, arXiv:1907.05053 (2019). [Google Scholar]
- É. Martel, Le spectre de Steklov de la boule trou’ee. J. des étudiants de 1er cycle en mathématiques de l’Université Laval (2014) [Google Scholar]
- H. Matthiesen and R. Petrides, Free boundary minimal surfaces of any topological type in Euclidean balls via shape optimization. Preprint, arXiv:2005.06051 (2020). [Google Scholar]
- P.J. Olver, Complex Analysis and Conformal Mapping. University of Minnesota (2017) [Google Scholar]
- B. Osting, Optimization of spectral functions of Dirichlet–Laplacian eigenvalues. J. Computat. Phys 229 (2010) 8578–8590 [Google Scholar]
- B. Osting and C.-Y. Kao, Minimal convex combinations of sequential Laplace–Dirichlet eigenvalues. SIAM J. Sci. Comput. 35 (2013) B731–B750 [Google Scholar]
- B. Ostingand C.-Y. Kao, Minimal convex combinations of three sequential Laplace-Dirichlet eigenvalues. Appl. Math. Optim. 69 (2014) 123–139 [Google Scholar]
- É. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330 [CrossRef] [EDP Sciences] [Google Scholar]
- É. Oudet, Personal website (2020). https://www-ljk.imag.fr/membres/Edouard.Oudet/research/SteklovMin/index˙n.php [Google Scholar]
- L.N. Trefethen, Series solution of Laplace problems. ANZIAM J 60 (2018) 1–26 [Google Scholar]
- M. Weber, Bloomington’s virtual minimal surface museum (2020). https://minimal.sitehost.iu.edu/archive/Spheres/Noids/Jorge-Meeks/web/index.html [Google Scholar]
- R. Weinstock, Inequalities for a classical eigenvalue problem. Indiana Univ. Math. J. 3 (1954) 745–753 [Google Scholar]
- W. Zeng, X. Yin, M. Zhang, F. Luo and X. Gu, Generalized Koebe’s method for conformal mapping multiply connected domains, in 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (2009) 89–100. doi:10.1145/1629255.1629267. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.