Open Access
Volume 27, 2021
Article Number 99
Number of page(s) 34
Published online 15 October 2021
  1. A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Vol. 87 of Encyclopaedia Math. Sciences. Springer, Berlin, 2004. [CrossRef] [Google Scholar]
  2. R. Bonalli, B. Herisse and E. Trélat, Optimal control of endoatmospheric launch vehicle systems: Geometric and computational issues. IEEE Trans. Autom. Control 65 (2020) 2418–2433. [CrossRef] [Google Scholar]
  3. B. Bonnard and M. Chyba, The Role of Singular Trajectories in Control Theory. Springer, Berlin (2003). [Google Scholar]
  4. B. Bonnard, L. Faubourg, G. Launay and E. Trélat, Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control Syst. 9 (2003) 155–199. [CrossRef] [Google Scholar]
  5. B. Bonnard, L. Faubourg and E. Trélat, Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques. Math. Models Methods Appl. Sci. 15 (2005) 109–140. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Bonnard and E. Trélat, Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale. ESAIM: COCV 7 (2002) 179–222. [CrossRef] [EDP Sciences] [Google Scholar]
  7. U. Boscain and B. Piccoli, Optimal syntheses for control systems on 2-D manifolds. Vol. 43 of Math. Appl.. Springer, Berlin (2004). [Google Scholar]
  8. H.O. Fattorini, Infinite-dimensional optimization and control theory. Cambridge University Press, Cambridge (1999). [CrossRef] [Google Scholar]
  9. W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control. Springer (1975). [Google Scholar]
  10. F. Gazzola and E.M. Marchini, The moon lander optimal control problem revisited. Math. Eng. 3 (2021) 1–14. [CrossRef] [Google Scholar]
  11. V. Jurdjevic, Geometric control theory. Vol. 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997). [Google Scholar]
  12. J.S. Meditch, On the problem of optimal thrust programming for a lunar soft landing. IEEE Trans. Automatic Control 9 (1964) 477–484. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Miele, The calculus of variations in applied aerodynamics and flight mechanics, in Optimization techniques with applications to aerospace systems, edited by G. Leitman, Mathematics in Science and Engineering 5. Academic Press (1962) 99–170. [CrossRef] [Google Scholar]
  14. H. Schättler and U. Ledzewicz, Geometric Optimal Control Theory, Methods, Examples. Springer, Berlin (2012). [CrossRef] [Google Scholar]
  15. H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim. 26 (1988) 899–918. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The C non singular case. SIAM J. Control Optim. 25 (1987) 856–905. [Google Scholar]
  17. E. Trélat, Optimal Control and Applications to Aerospace: Some Results and Challenges. J. Optim. Theory Appl. 154 (2012) 713–758. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Zhu, E. Trélat and M. Cerf, Minimum time control of the rocket attitude reorientation associated with orbit dynamics. SIAM J. Control Optim. 54 (2016) 391–422. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.