Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 78
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2021073
Published online 23 July 2021
  1. F.D. Araruna, E. Fernández-Cara and D.A. Souza, On the control of the Burgers-alpha model. Adv. Differ. Equ. 18 (2013) 935–954. [Google Scholar]
  2. F.D. Araruna, E. Fernández-Cara and D.A. Souza, Uniform local null control of the Leray-α model. ESAIM: COCV 20 (2014) 1181–1202. [EDP Sciences] [Google Scholar]
  3. C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, Proceedings of the conference held at the university of Paris-Sud Orsay, France (1975)., Vol. 565 of Lectures Notes in Math. Springer-Verlag (1976) 1–13. [Google Scholar]
  4. A.L. Bertozzi, J.B. Garnett and T. Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal. 44 (2012) 651–681. [Google Scholar]
  5. H.S. Bhat and R.C. Fetecau, A Hamiltonian regularization of the Burgers equation. J. Nonlinear Sci. 16 (2006) 615–638. [Google Scholar]
  6. H.S. Bhat, R.C. Fetecau and J. A. Goodman, Leray-type regularization for the isentropic Euler equations. Nonlinearity 20 (2007) 2035–2046. [Google Scholar]
  7. H.S. Bhat and R.C. Fetecau, Stability of fronts for a regularization of the Burgers equation. Quart. Appl. Math. 66 (2008) 473–496. [Google Scholar]
  8. H.S. Bhat and R.C. Fetecau, The Riemann problem for the Leray-Burgers equation. J. Differ. Equ. 246 (2009) 3957–3979. [Google Scholar]
  9. H.S. Bhatand R.C. Fetecau, On a regularization of the compressible Euler equations for an isothermal gas. J. Math. Anal. Appl. 358 (2009) 168–181. [Google Scholar]
  10. R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993) 1661–1664. [PubMed] [Google Scholar]
  11. M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Control Optim. 48 (2009) 1567–1599. [Google Scholar]
  12. A. Cheskidov, D. Holm, E. Olson and E. Titi, On a Leray-α model of turbulence. Proc. R. Soc. A 461 (2005) 629–649. [Google Scholar]
  13. G.M. Coclite, K.H. Karlsen and Y.-S. Kwon, Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation. J. Funct. Anal. 257 (2009) 3823–3857. [Google Scholar]
  14. M. Colombo, G. Crippa and L.V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes. Arch. Ratl. Mech. Anal. 233 (2019) 1131–1167. [Google Scholar]
  15. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5 (1992) 295–312. [Google Scholar]
  16. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  17. J.M. Coron and S. Xiang, Small-time global stabilization of the viscous Burgers equation with three scalar controls. J. Math. Pures Appl. 151 (2021) 212–256. [Google Scholar]
  18. K. Craig and A.L. Bertozzi, A blob method for the aggregation equation. Math. Comp. 85 (2016) 1681–1717. [Google Scholar]
  19. A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, edited by A. Degasperis and G. Gaeta. World Scientific (1999) 23–37. [Google Scholar]
  20. J.I. Díaz, Obstruction and some approximate controllability results for the Burgers equation and related problems. Control of Partial Differential Equations and Applications. Vol. 174 of Lecture Notes in Pure and Appl. Math. Dekker, New York (1995) 63–76. [Google Scholar]
  21. C.I. Doering and A.O. Lopes, Equações diferenciais ordinárias, 5 ed., Coleção matemática universitária, IMPA (2014). [Google Scholar]
  22. A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798–819. [Google Scholar]
  23. J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations. J. Funct. Anal. 174 (2009) 479–508. [Google Scholar]
  24. L. Evans, Partial differential equations, 2 ed., Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2010). [Google Scholar]
  25. C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61. [Google Scholar]
  26. E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls. Syst. Control Lett. 56 (2007) 366–372. [Google Scholar]
  27. E. Fernández-Cara and D.A. Souza, Remarks on the control of a family of b–equations. Trends Control Theory Partial Differ. Equ. 32 (2019) 123–138. [Google Scholar]
  28. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 5 (2000) 583–616. [Google Scholar]
  29. C. Foias, D. Holm and E. Titi, The three dimensional viscous Camassa-Holm equation and their relation to the Navier-Stokes equation and turbulence theory. J. Dyn. Differ. Equ. 14 (2002) 1–36. [Google Scholar]
  30. C. Foias, C. Manley, O. Rosa and R. Temam, Navier-Stokes equations and turbulence. Vol. 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press (2001). [Google Scholar]
  31. A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes. Seoul National University, Korea (1996). [Google Scholar]
  32. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences] [Google Scholar]
  33. O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation. SIAM J. Control Optim. 46 (2007) 1211–1238. [Google Scholar]
  34. S. Guerrero and O.Y. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 897–906. [Google Scholar]
  35. J.K. Hale, Ordinary differential equations, 2nd edn. Krieger Press, Florida (1980). [Google Scholar]
  36. P. Hartman, Ordinary differential equations. John Wiley & Sons (1964). [Google Scholar]
  37. D. Holm and M. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. 2 (2003) 323–380. [Google Scholar]
  38. T. Horsin, On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83–95. [CrossRef] [EDP Sciences] [Google Scholar]
  39. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248. [Google Scholar]
  40. J.-L. Lions and E. Magenes, Vol. 2 of Non-Homogeneous Boundary Value Problems and Applications, Translated from the French by P. Kenneth. Die Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York–Heidelberg (1972). [Google Scholar]
  41. F. Marbach, Small time global null controllability for a viscous Burgers’ equation despite the presence of a boundary layer. J. Math. Pures Appl. 102 (2014) 364–384. [Google Scholar]
  42. G. Norgard and K. Mohseni, A regularization of the Burgers equation using a filtered convective velocity. J. Phys. A 41 (2008) 21. [Google Scholar]
  43. G. Norgard and K. Mohseni, On the convergence of the convectively filtered Burgers equation to the entropy solution of the inviscid Burgers equation. Multiscale Model. Simul. 7 (2009) 1811–1837. [Google Scholar]
  44. V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions. SIAM J. Control Optim. 50 (2012) 2025–2045. [Google Scholar]
  45. V. Perrollaz, Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval. J. Funct. Anal. 259 (2010) 2333–2365. [Google Scholar]
  46. C. Shen, On a regularization of a scalar conservation law with discontinuous coefficients. J. Math. Phys. 55 (2014) 15. [Google Scholar]
  47. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.