Issue |
ESAIM: COCV
Volume 27, 2021
Special issue in honor of Enrique Zuazua's 60th birthday
|
|
---|---|---|
Article Number | E3 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/cocv/2021092 | |
Published online | 01 October 2021 |
- K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems. Arch. Ratl. Mech. Anal. 199 (2011) 177–227. [CrossRef] [Google Scholar]
- C. Castro and E. Zuazua, Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math. 60 (2000) 1205–1233. [CrossRef] [Google Scholar]
- T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 (2008) 1–41. [CrossRef] [Google Scholar]
- S. Ervedoza, A. Marica and E. Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016) 503–542. [CrossRef] [Google Scholar]
- C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61. [Google Scholar]
- E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. [Google Scholar]
- E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 17 (2000) 583–616. [CrossRef] [MathSciNet] [Google Scholar]
- R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76. [Google Scholar]
- A. Haraux, Semi-linear hyperbolic problems in bounded domains. Math. Rep. 3 (1987) i–xxiv and 1–281. [Google Scholar]
- A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems. Arch. Ratl. Mech. Anal. 100 (1988) 191–206. [CrossRef] [MathSciNet] [Google Scholar]
- A. Haraux and E. Zuazua, Super-solutions of eigenvalue problems and the oscillation properties of second order evolution equations. J. Differ. Equ. 74 (1988) 11–28. [CrossRef] [Google Scholar]
- L.I. Ignat and E. Zuazua, Convergence of a two-grid algorithm for the control of the wave equation. J. Eur. Math. Soc. (JEMS) 11 (2009) 351–391. [CrossRef] [Google Scholar]
- J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation. ESAIM: M2AN 33 (1999) 407–438. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33–54. [Google Scholar]
- G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ratl. Mech. Anal. 148 (1999) 179–231. [CrossRef] [MathSciNet] [Google Scholar]
- A. López, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000) 741–808. [CrossRef] [MathSciNet] [Google Scholar]
- A. Marica and E. Zuazua, Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1-d wave equation. C. R. Math. Acad. Sci. Paris 348 (2010) 1087–1092. [CrossRef] [Google Scholar]
- A. Marica and E. Zuazua, High frequency wave packets for the Schrödinger equation and its numerical approximations. C. R. Math.Acad. Sci. Paris 349 (2011) 105–110. [CrossRef] [Google Scholar]
- A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Probl. 26 (2010) 085018. [Google Scholar]
- M. Negreanu and E. Zuazua, Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338 (2004) 413–418. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 (2013) 1097–1126. [CrossRef] [Google Scholar]
- Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data. Arch. Ratl. Mech. Anal. 216 (2015) 921–981. [CrossRef] [Google Scholar]
- Y. Privat, E. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method. SIAM J. Control Optim. 55 (2017) 1128–1152. [CrossRef] [Google Scholar]
- L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26 (2007) 337–365. [CrossRef] [MathSciNet] [Google Scholar]
- E. Trélat, C. Zhang and E. Zuazua, Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J. Control Optim. 56 (2018) 1222–1252. [Google Scholar]
- E. Zuazua, Contrôlabilité exacte d’un modèle de plaques vibrantes en un temps arbitrairement petit. C. R. Acad. Sci. Paris Sér. I Math. 304 (1987) 173–176. [Google Scholar]
- E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems. Asymptotic Anal. 1 (1988) 161–185. [CrossRef] [Google Scholar]
- E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 109–129. [Google Scholar]
- E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. (9) 78 (1999) 523–563. [CrossRef] [MathSciNet] [Google Scholar]
- E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.