Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 97
Number of page(s) 17
DOI https://doi.org/10.1051/cocv/2021096
Published online 12 October 2021
  1. B. Andrews, Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50 (2001) 783–827. [CrossRef] [Google Scholar]
  2. G. Barles and P.E. Souganidis, A new approach to front propagation problems: theory and applications. Arch. Ratl. Mech. Anal. 141 (1998) 237–296. [CrossRef] [Google Scholar]
  3. G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets. Arch. Ratl. Mech. Anal. 179 (2006) 109–152. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973). [Google Scholar]
  5. A. Cesaroni and M. Novaga, Fractional mean curvature flow of Lipschitz graphs. Preprint arxiv:2103.11346 (2021). [Google Scholar]
  6. A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows. J. Am. Math. Soc. 32 (2019) 779–824. [CrossRef] [Google Scholar]
  7. A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Generalized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE 12 (2019) 789–813. [CrossRef] [Google Scholar]
  8. A. Chambolle, M. Morini and M. Ponsiglione, Existence and uniqueness for a crystalline mean curvature flow. Commun. Pure Appl. Math. 70 (2017) 1084–1114. [CrossRef] [Google Scholar]
  9. J. Clutterbuck and O.C. Schn’́urer, Stability of mean convex cones under mean curvature flow. Math. Z. 267 (2011) 535–547. [CrossRef] [Google Scholar]
  10. K. Ecker and G. Huisken, Mean curvature evolution of entire graphs. Ann. Math. (2) 130 (1989) 453–471. [CrossRef] [Google Scholar]
  11. K. Ecker, Regularity theory for mean curvature flow. Vol. 57 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2004). [Google Scholar]
  12. M.-H. Giga, Y. Giga and H. Hontani, Self-similar expanding solutions in a sector for a crystalline flow. SIAM J. Math. Anal. 37 (2005) 1207–1226. [CrossRef] [Google Scholar]
  13. Y. Giga, Surface evolution equations. Vol. 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel (2006). A level set approach. [Google Scholar]
  14. Y. Giga and N. Požár, Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow. Commun. Pure Appl. Math. 71 (2018) 1461–1491. [CrossRef] [Google Scholar]
  15. Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces. Adv. Differ. Equ. 21 (2016) 631–698. [Google Scholar]
  16. G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20 (1984) 237–266. [CrossRef] [Google Scholar]
  17. G.M. Lieberman, Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ (1996). [CrossRef] [Google Scholar]
  18. A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel (1995). [Google Scholar]
  19. M. Nara and M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane. J. Differ. Equ. 237 (2007) 61–76. [CrossRef] [Google Scholar]
  20. N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. Vol. 2 of Progr. Nonlinear Differ. Equ. Appl.. Birkhäuser Boston, Boston, MA (1989). [Google Scholar]
  21. L. Wang, A Bernstein type theorem for self-similar shrinkers. Geom. Dedicata 151 (2011) 297–303. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.