Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 10
Number of page(s) 38
DOI https://doi.org/10.1051/cocv/2022002
Published online 27 January 2022
  1. S.-I. Amari, R. Karakida and M. Oizumi, Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem. Inf. Geometry 1 (2018) 13–37. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio and N. Gigli, A User’s Guide to Optimal Transport. Springer, Berlin, Heidelberg (2013). [Google Scholar]
  3. G. Bayraksan and D.K. Love, Chapter 1 of Data-Driven Stochastic Programming Using Phi-Divergences (2015) 1–19. [Google Scholar]
  4. J. Blanchet, Y. Kang and K. Murthy, Robust Wasserstein profile inference and applications to machine learning. J. Appl. Probab. 56 (2016) 10. [Google Scholar]
  5. J. Blanchet and K. Murthy, Quantifying distributional model risk via optimal transport. SSRN Electr. J. (2016). [Google Scholar]
  6. R.I. Bot, S.-M. Grad and G. Wanka, Duality in Vector Optimization. Springer-Verlag, Berlin Heidelberg (2009). [CrossRef] [Google Scholar]
  7. T. Breuer and I. Csiszár, Measuring distribution model risk. Math. Finance 26 (2013) 395–411. [Google Scholar]
  8. K. Chowdhary and P. Dupuis, Distinguishing and integrating aleatoric and epistemic variationi in uncertainty quantification. ESAIM: M2AN 47 (2013) 635–662. [CrossRef] [EDP Sciences] [Google Scholar]
  9. P. Dupuis and R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations. John Wiley & Sons, New York (1997). [CrossRef] [Google Scholar]
  10. P. Dupuis, M.R. James and I.R. Petersen, Robust properties of risk–sensitive control. Math. Control Signals Syst. 13 (2000) 318–332. [CrossRef] [Google Scholar]
  11. P. Dupuis, M.A. Katsoulakis, Y. Pantazis and P. Plechac, Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA J. Uncert. Quantific. 4 (2016) 80–111. [CrossRef] [Google Scholar]
  12. P. Glasserman and X. Xu, Robust risk measurement and model risk. Quantit. Finance 14 (2014) 29–58. [CrossRef] [Google Scholar]
  13. L.P. Hansen and T.J. Sargent, Robust control and model uncertainty. Am. Econ. Rev. 91 (2001) 60–66. [CrossRef] [Google Scholar]
  14. S. Kolouri, S. Park, M. Thorpe, D. Slepcev and G. Rohde, Optimal mass transport: Signal processing and machine-learning applications. IEEE Signal Process. Mag. 34 (2017) 43–59. [CrossRef] [PubMed] [Google Scholar]
  15. H. Lam, Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41 (2016) 1248–1275. [CrossRef] [MathSciNet] [Google Scholar]
  16. A.E.B. Lim, J.G. Shanthikumar and T. Watewai, Robust intensity control with multiple levels of model uncertainty and the dual risk-sensitive problem. In 49th IEEE Conference on Decision and Control (CDC) (2010) 4305–4310. [Google Scholar]
  17. X. Nguyen, H.J. Wainwright and M.I. Jordan, Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Trans. Inform. Theory 56 (2010) 5847–5861. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Nilim and L. El Ghaoui, Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53 (2005) 780–798. [CrossRef] [MathSciNet] [Google Scholar]
  19. I.R. Petersen, M.R. James and P. Dupuis, Minimax optimal control of stochastic uncertain systems with relative entropy constraints. IEEE Trans. Automatic Control 45 (2000) 398–412. [CrossRef] [MathSciNet] [Google Scholar]
  20. S.T. Rachev and L. Rüschendorf, Mass Transportation Problems. Probability and Its Applications. Springer-Verlag New York (1998). [Google Scholar]
  21. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). [Google Scholar]
  22. W. Rudin, Functional Analysis. McGraw-Hill, New York (1991). [Google Scholar]
  23. F. Santambrogio, Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser Basel (2015). [CrossRef] [Google Scholar]
  24. B. Schmitzer and B. Wirth, A framework for Wasserstein-1-type metrics. J. Convex Anal. 26 (2019) 353–396. [MathSciNet] [Google Scholar]
  25. C. Villani, Optimal Transport: Old and New. Springer-Verlag, Berlin Heidelberg (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.