Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 48
Number of page(s) 20
DOI https://doi.org/10.1051/cocv/2022033
Published online 07 July 2022
  1. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. 2nd ed., 2nd edn. Birkhauser, Basel (2008). [Google Scholar]
  2. J. Backhoff-Veraguas and P. Gudmund, Stability of martingale optimal transport and weak optimal transport. Preprint arXiv:1904.04171 (2019). [Google Scholar]
  3. D. Bakry and M. Emery, Diffusions hypercontractives., Semin. de probabilités XIX, Univ. Strasbourg 1983/84, Proc., Lect. Notes Math. 1123 (1985) 177–206. [Google Scholar]
  4. D. Bakry, I. Gentil and M. Ledoux, Analysis and geometry of Markov diffusion operators. Springer, Cham (2014). [Google Scholar]
  5. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  6. Y. Chen, T.T. Georgiou and M. Pavon, On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169 (2016) 671–691. Probab. Theory Relat. Fields 174 (2019) 1-47. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Clerc, G. Conforti and I. Gentil, Long-time behaviour of entropic interpolations (2020). [Google Scholar]
  8. G. Clerc, G. Conforti and I. Gentil, On the variational interpretation of local logarithmic Sobolev inequalities (2020), working paper or preprint. [Google Scholar]
  9. G. Conforti, A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost. [Google Scholar]
  10. H. Follmer, Random fields and diffusion processes., Calcul des probabilités, Éc. d’Été, Saint-Flour. 1985-87, Lect. Notes Math. 1362 (1988) 101–203. [CrossRef] [Google Scholar]
  11. I. Gentil, C. Leonard and L. Ripani, About the analogy between optimal transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. 26 (2017) 569–601. [CrossRef] [MathSciNet] [Google Scholar]
  12. I. Gentil, C. Leonard and L. Ripani, Dynamical aspects of the generalized Schrödinger problem via Otto calculus - a heuristic point of view. Rev. Mat. Iberoam. 36 (2020) 1071–1112. [CrossRef] [MathSciNet] [Google Scholar]
  13. I. Gentil, C. Léonard, L. Ripani and L. Tamanini, An entropic interpolation proof of the HWI inequality. Stochastic Process. Appl. 130 (2020) 907–923. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Ghosal, M. Nutz and E. Bernton, Stability of Entropic Optimal Transport and Schrödinger Bridges. Preprint arXiv:2106.03670 (2021). [Google Scholar]
  15. N. Gigli, Second order analysis on (T2(M), W2). Mem. Am. Math. Soc. 1018 (2012) 154. [Google Scholar]
  16. N. Gigli and L. Tamanini, Benamou-Brenier and Kantorovich duality formulas for the entropic cost on RCD*(K,N) spaces. Probab. Theory Relat. Fields 176 (2020) 1–34. [CrossRef] [Google Scholar]
  17. A. Grigor’yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA (2009). [Google Scholar]
  18. C. Leonard, A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. 34 (2014) 1533–1574. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Mikami, Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Relat. Fields 129 (2004) 245–260. [CrossRef] [Google Scholar]
  20. F. Otto, The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. [CrossRef] [Google Scholar]
  21. G. Peyrée and M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
  22. E. Schrödinger, Über die Umkehrung der Naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144 (1931) 144–153. [Google Scholar]
  23. E. Schrödinger, Sur la theorie relativiste de l’electron et l’interprétation de la mecanique quantique. Ann. Inst. H. Poincare 2 (1932) 269–310. [MathSciNet] [Google Scholar]
  24. L. Tamanini, Analysis and geometry of RCD spaces via the Schrödinger problem,. Ph.D. thesis (2017). [Google Scholar]
  25. C. Villani, Optimal transport. Old and new. Springer, Berlin (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.