Open Access
Volume 28, 2022
Article Number 38
Number of page(s) 24
Published online 14 June 2022
  1. E. Brué, M. Colombo and C. De Lellis, Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Preprint arXiv:2003.00539 [math.AP] (2020). [Google Scholar]
  2. T. Buckmaster, M. Colombo and V. Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1. Preprint arXiv:1809.00600 [math.AP] (2020). [Google Scholar]
  3. T. Buckmaster, C. De Lellis, L. Székelyhidi Jr. and V. Vicol, Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math. 72 (2019) 229–274. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. 189 (2019) 101–144. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Buckmaster and V. Vicol, Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 6 (2019) 173–263. [Google Scholar]
  6. T. Buckmaster, S. Shkoller and V. Vicol, Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math. 72 (2019) 1809–1874. [CrossRef] [Google Scholar]
  7. X. Cheng, H. Kwon and D. Li, Non-uniqueness of steady-state weak solutions to the surface quasi-geostrophic equations. Preprint arXiv:2007.09591 [math.AP] (2020). [Google Scholar]
  8. A. Cheskidov and X. Luo, Stationary and discontinuous weak solutions of the Navier-Stokes equations. Preprint arXiv:1901.07485 [math.AP] (2020). [Google Scholar]
  9. M. Colombo, C. De Lellis and L. De Rosa, Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations. Commun. Math. Phys. 362 (2018) 659–688. [CrossRef] [Google Scholar]
  10. S. Daneri and L. SzékelyhidiJr., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ratl. Mech. Anal. 224 (2017) 471–514. [CrossRef] [Google Scholar]
  11. C. De Lellis and L. SzékelyhidiJr., The Euler equations as a differential inclusion. Ann. Math. 170 (2009) 1417–1436. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. De Lellis and L. SzékelyhidiJr., Dissipative continuous Euler flows. Invent. Math. 193 (2013) 377–407. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. De Lellis and L. SzékelyhidiJr., On h-principle and Onsager’s conjecture. Eur. Math. Soc. Newsl. 95 (2015) 19–24. [Google Scholar]
  14. C. De Lellis and L. SzékelyhidiJr., High dimensionality and h-principle in PDE. Bull. Amer. Math. Soc. (N.S.) 54 (2017) 247–282. [Google Scholar]
  15. L. De Rosa, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations. Commun. Partial Differ. Equ. 44 (2019) 335–365. [CrossRef] [Google Scholar]
  16. L. De Rosa and R. Tione, Sharp energy regularity and typicality results for Holder solutions of incompressible Euler equations. Anal. PDE 15 (2022) 405–428. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Isett, A proof of Onsager’s conjecture. Ann. Math. 188 (2018) 871–963. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Isett and A. Ma, A direct approach to nonuniqueness and failure of compactness for the SQG equation. Preprint arXiv:2007.03078 [math.AP] (2020). [Google Scholar]
  19. P.G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton, FL (2016). [CrossRef] [Google Scholar]
  20. S. Modena and G. Sattig, Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020) 1075–1108. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Modena and L. SzékelyhidiJr., Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4 (2018) Paper No. 18, 38. [CrossRef] [Google Scholar]
  22. S. Modena and L. SzékelyhidiJr., Non-renormalized solutions to the continuity equation. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 208, 30. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.