Open Access
Volume 28, 2022
Article Number 82
Number of page(s) 19
Published online 23 December 2022
  1. B. Ahmad, A. Alsaedi, M.R. Alsulami and S. Ntouyas, Existence theory for coupled nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic type boundary conditions on an arbitrary domain. AIMS Math. 4 (2019) 1634-1663. [CrossRef] [MathSciNet] [Google Scholar]
  2. B.D.O. Anderson and J.B. Moore, Optimal control-Linear quadratic methods. Prentice-Hall, New York (1989). [Google Scholar]
  3. F. Antonelli, Backward-forward stochastic differential equations. Ann. Appl. Probab. 3 (1993) 777-793. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Bensoussan, Nonlinear Filtering and Stochastic Control. Springer-Verlag, Berlin (1982). [Google Scholar]
  5. S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Control Optim. 36 (1998) 1685-1702. [Google Scholar]
  6. Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103 (1995) 273-283. [CrossRef] [MathSciNet] [Google Scholar]
  7. Y. Hu, X. Shi and Z. Xu, Constrained stochastic LQ control with regime switching and application to portfolio selection. To appear in Ann. Appl. Probab. (2021) arXiv:2004.11832. [Google Scholar]
  8. X. Li, X. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon. J. Global Optim. 27 (2003) 149-175. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Liu and Z. Wu, Well-posedness of fully coupled linear forward-backward stochastic differential equations. J. Syst. Sci. Complex. 32 (2019) 789-802. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Ma, Z. Wu, D. Zhang and J. Zhang, On well-posedness of forward-backward SDEs - a unified approach. Ann. Appl. Probab. 25 (2015) 2168-2214. [MathSciNet] [Google Scholar]
  11. J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly - a four step scheme. Probab. Theory Relat. Fields 98 (1994) 339-359. [CrossRef] [Google Scholar]
  12. J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications. Lecture Notes in Math. 1702 Springer-Verlag, New York (1999). [Google Scholar]
  13. E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114 (1999) 123-150. [CrossRef] [Google Scholar]
  14. S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825-843. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53-75. [Google Scholar]
  16. A. Verma, B. Pandit and R. Agarwal, On multiple solutions for a fourth order nonlinear singular boundary value problems arising in epitaxial growth theory. Math. Methods Appl. Sci. 7 (2021) 5418-5435. [CrossRef] [MathSciNet] [Google Scholar]
  17. Z. Wu, Adapted solutions of forward-backward stochastic differential equations and their parameter dependence. Chinese Ann. Math. Ser. A 1 (1998) 55-62. [Google Scholar]
  18. Z. Wu and Z. Yu, Probabilistic interpretation for a system of quasilinear parabolic partial differential equation combined with algebra equations. Stochastic Process Appl. 124 (2014) 3921-3947. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Yong, Linear forward-backward stochastic differential equations with random coefficients. Probab. Theory Relat. Fields 135 (2006) 53-83. [CrossRef] [Google Scholar]
  20. J. Yong and X. Zhou, Stochastic controls. Hamiltonian systems and HJB equations. Springer-Verlag, New York (1999). [Google Scholar]
  21. J. Yong, Finding adapted solutions of forward backward stochastic differential equations: method of continuation. Probab. Theory Relat. Fields 107 (1997) 537-572. [CrossRef] [Google Scholar]
  22. Z. Yu, Equivalent cost functionals and stochastic linear quadratic optimal control problems. ESAIM: COCV 19 (2013) 78-90. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.