Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 74
Number of page(s) 42
DOI https://doi.org/10.1051/cocv/2022069
Published online 22 December 2022
  1. Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta and F. Santambrogio, Mean field games, vol. 2281 of Lecture Notes in Mathematics. Springer (2020). [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Birkhäuser Verlag, Basel (2005) viii+333. [Google Scholar]
  3. J.-P. Aubin and H. Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston, Inc., Boston, MA (1990). [Google Scholar]
  4. R.J. Aumann, Markets with a continuum of traders. Econometrica 32 (1964) 39–50. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.J. Aumann and L.S. Shapley, Values of non-atomic games. Princeton University Press, Princeton, N.J. (1974), a Rand Corporation Research Study. [Google Scholar]
  6. S. Banach, Wstęp do teorii funkcji rzeczywistych, Monografie Matematyczne. Tom XVII.], Polskie Towarzystwo Matematyczne, Warszawa-Wroclaw (1951). [Google Scholar]
  7. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA (1997). [Google Scholar]
  8. J.-D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, in Active particles. Vol. 1. Advances in theory, models, and applications. Model. Simul. Sci. Eng. Technol. Birkhäuser/Springer, Cham (2017) 141–171. [CrossRef] [Google Scholar]
  9. N. Bourbaki, Topologie Générale. Chapitres 5 a 10, Eléments de Mathématique. Springer (2007). [Google Scholar]
  10. M. Burger, M. Di Francesco, P.A. Markowich and M.-T. Wolfram, On a mean field game optimal control approach modeling fast exit scenarios in human crowds, in 52nd IEEE Conference on Decision and Control, IEEE (2013). [Google Scholar]
  11. P. Cannarsa and R. Capuani, Existence and uniqueness for mean field games with state constraints, in PDE models for multi-agent phenomena. Springer INdAM Ser., vol. 28. Springer, Cham (2018) 49–71. [CrossRef] [Google Scholar]
  12. P. Cannarsa, R. Capuani and P. Cardaliaguet, C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games. Math. Eng. 1 (2019) 174–203. [Google Scholar]
  13. P. Cannarsa, R. Capuani and P. Cardaliaguet, Mean field games with state constraints: from mild to pointwise solutions of the PDE system, Calc. Var. Partial Differ. Equ. 60 (2021) Paper No. 108, 33. [CrossRef] [Google Scholar]
  14. P. Cannarsa and M. Castelpietra, Lipschitz continuity and local semiconcavity for exit time problems with state constraints. J. Differ. Equ. 245 (2008) 616–636. [CrossRef] [Google Scholar]
  15. P. Cannarsa, M. Castelpietra and P. Cardaliaguet, Regularity properties of attainable sets under state constraints, in Geometric control and nonsmooth analysis. Ser. Adv. Math. Appl. Sci., vol. 76, 120–135, World Sci. Publ., Hackensack, NJ (2008). [CrossRef] [Google Scholar]
  16. P. Cannarsa and C. Mendico, Mild and weak solutions of mean field game problems for linear control systems. Minimax Theory Appl. 5 (2020) 221–250. [MathSciNet] [Google Scholar]
  17. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Vol. 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (2004). [Google Scholar]
  18. P. Cardaliaguet, Notes on mean field games, https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf. [Google Scholar]
  19. P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, in Analysis and geometry in control theory and its applications. Springer INdAM Ser., vol. 11. Springer, Cham (2015) 111–158. [CrossRef] [Google Scholar]
  20. P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The master equation and the convergence problem in mean field games, vol. 201 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2019). [Google Scholar]
  21. P. Cardaliaguet, A.R. Mészáros and F. Santambrogio, First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54 (2016) 2672–2709. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications. I. vol. 83 of Probability Theory and Stochastic Modelling. Springer, Cham (2018). [Google Scholar]
  23. R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications. II. Vol. 84 of Probability Theory and Stochastic Modelling. Springer, Cham (2018). [Google Scholar]
  24. R. Carmona and D. Lacker, A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25 (2015) 1189–1231. [Google Scholar]
  25. F.H. Clarke, Optimization and nonsmooth analysis. Classics in Applied Mathematics, vol. 5, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990). [Google Scholar]
  26. E. Cristiani, A. De Santo and M. Menci, A Generalized Mean-Field Game Model for the Dynamics of Pedestrians with Limited Predictive Abilities (2021). arXiv:2108.00086. [Google Scholar]
  27. E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9 (2011) 155–182. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions. J. Funct. Anal. 123 (1994) 129–201. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Ducasse, G. Mazanti and F. Santambrogio, Second order local minimal-time mean field games. NoDEA Nonlinear Differential Equations Appl. 29 (2022) Paper No. 37, 32 pp. [CrossRef] [Google Scholar]
  30. S. Dweik and G. Mazanti, Sharp semi-concavity in a non-autonomous control problem and Lp estimates in an optimal-exit MFG. NoDEA Nonlinear Differ. Equ. Appl. 27 (2020) Paper No. 11, 59 pp. [CrossRef] [Google Scholar]
  31. M. Fischer and F.J. Silva, On the asymptotic nature of first order mean field games. Appl. Math. Optim. 84 (2021) 2327–2357. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Gibelli and N. Bellomo (editors), Volume 1 of Crowd Dynamics. Springer International Publishing (2018). [Google Scholar]
  33. D.A. Gomes, E.A. Pimentel and V. Voskanyan, Regularity theory for mean-field game systems, SpringerBriefs in Mathematics, Springer, [Cham] (2016). [CrossRef] [Google Scholar]
  34. D.A. Gomes and V.K. Voskanyan, Extended deterministic mean-field games. SIAM J. Control Optim. 54 (2016) 1030–1055. [CrossRef] [MathSciNet] [Google Scholar]
  35. D. Helbing and P. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51 (1995) 4282–4286. [Google Scholar]
  36. D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical features of escape panic. Nature 407 (2000) 487–490. [CrossRef] [PubMed] [Google Scholar]
  37. L.F. Henderson, The statistics of crowd fluids. Nature 229 (1971) 381–383. [PubMed] [Google Scholar]
  38. M. Huang, P.E. Caines and R.P. Malhamée, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions, in 42nd IEEE Conference on Decision and Control, 2003. Proceedings, vol. 1. IEEE (2003) 98–103. [Google Scholar]
  39. M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: individualmass behavior and decentralized ε-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Huang, R.P. Malhamée and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. [Google Scholar]
  41. R.L. Hughes, A continuum theory for the flow of pedestrians. Transp. Res. B: Methodolog. 36 (2002) 507–535. [CrossRef] [Google Scholar]
  42. R.L. Hughes, The flow of human crowds, in Annual review of fluid mechanics. Vol. 35. Annu. Rev. Fluid Mech., vol. 35, 169–182, Annual Reviews, Palo Alto, CA (2003). [CrossRef] [Google Scholar]
  43. B. Jovanovic and R.W. Rosenthal, Anonymous sequential games. J. Math. Econom. 17 (1988) 77–87. [CrossRef] [MathSciNet] [Google Scholar]
  44. A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. Part B 45 (2011) 1572–1589. [CrossRef] [Google Scholar]
  45. D. Lacker, Mean field games via controlled martingale problems: existence of Markovian equilibria. Stoch. Process. Appl. 125 (2015) 2856–2894. [CrossRef] [Google Scholar]
  46. J.-M. Lasry and P.-L. Lions, Jeux a champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
  47. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
  48. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [Google Scholar]
  49. B. Maury and S. Faure, Crowds in equations, Advanced Textbooks in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2019). [Google Scholar]
  50. G. Mazanti and F. Santambrogio, Minimal-time mean field games. Math. Models Methods Appl. Sci. 29 (2019) 1413–1464. [CrossRef] [MathSciNet] [Google Scholar]
  51. A. Muntean and F. Toschi (editors), Collective dynamics from bacteria to crowds. CISM International Centre for Mechanical Sciences. Courses and Lectures, vol. 553. Springer, Vienna (2014). [Google Scholar]
  52. B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199 (2011) 707–738. [CrossRef] [MathSciNet] [Google Scholar]
  53. M.D. Rosini, Macroscopic models for vehicular flows and crowd dynamics: theory and applications, Understanding Complex Systems, Springer, Heidelberg (2013). [Google Scholar]
  54. S. Sadeghi Arjmand and G. Mazanti, On the characterization of equilibria of nonsmooth minimal-time mean field games with state constraints, in 2021 60th IEEE Conference on Decision and Control (CDC) (2021) 5300–5305. [CrossRef] [Google Scholar]
  55. S. Sadeghi Arjmand and G. Mazanti, Multipopulation minimal-time mean field games. SIAM J. Control Optim. 60 (2022) 1942–1969. [CrossRef] [MathSciNet] [Google Scholar]
  56. F. Santambrogio, Optimal transport for applied mathematicians. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser/Springer, Cham (2015). [CrossRef] [Google Scholar]
  57. F. Santambrogio and W. Shim, A Cucker-Smale inspired deterministic mean field game with velocity interactions. SIAM J. Control Optim. 59 (2021) 4155–4187. [CrossRef] [MathSciNet] [Google Scholar]
  58. R. Vinter, Optimal control, Modern Birkhäuser Classics. Birkhäuser Boston, Ltd., Boston, MA (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.