Open Access
Volume 29, 2023
Article Number 65
Number of page(s) 29
Published online 09 August 2023
  1. M. Abramowitz and I.A. Stegun, Abramowitz, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972). [Google Scholar]
  2. H.N. Abramson, Dynamic behavior of liquids in moving containers. Appl. Mech. Rev. 16 (1963) 501–506. [Google Scholar]
  3. T. Alazard, Stabilization of the water-wave equations with surface tension. Ann. PDE 3 (2017) 1–41. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Alazard, Boundary observability of gravity water waves, in Annales de l’Institut Henri Poincaré C, Analyse non linéaire, Vol. 35. Elsevier (2018) 751–779. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Alazard, P. Baldi and D. Han-Kwan, Control of water waves. J. Eur. Math. Soc. 20 (2018) 657–745. [CrossRef] [MathSciNet] [Google Scholar]
  6. N. Asmar and G. Jones, Applied Complex Analysis with Partial Differential Equations. Prentice Hall (2002). [Google Scholar]
  7. T.B. Benjamin and J.C. Scott, Gravity-capillary waves with edge constraints. J. Fluid Mech. 92 (1979) 241–267. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Bisgard et al., A compact embedding for sequence spaces. Missouri J. Math. Sci. 24 (2012) 182–189. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Brimacombe and A. Bustos, Toward a basic understanding of injection phenomena in the copper converter. Phys. Chem. Extractive Metall. (1985) 327–351. [Google Scholar]
  10. A. Castellanos, Electrohydrodynamics, Vol. 380. Springer Science & Business Media (1998). [CrossRef] [Google Scholar]
  11. J.-M. Coron, Control and Nonlinearity, Vol. 136. American Mathematical Society (2007). [Google Scholar]
  12. K. Deimling, Nonlinear Functional Analysis. Dover Publications, Mineola, NY (2010). [Google Scholar]
  13. M. Fontelos and F. De La Hoz, Singularities in water waves and the Rayleigh–Taylor problem. J. Fluid Mech. 651 (2010) 211. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Fontelos and J. López-Ríos, Gravity waves oscillations at semicircular and general 2D containers: an efficient computational approach to 2D sloshing problem. Z. Angew. Math. Phys. 71 (2020) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Godoy, A. Osses, J.H. Ortega and A. Valencia, Modeling and control of surface gravity waves in a model of a copper converter. Appl. Math. Modell. 32 (2008) 1696–1710. [CrossRef] [Google Scholar]
  16. J. Graham-Eagle, A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints, in Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 94. Cambridge University Press (1983) 553–564. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Hochstadt, Integral Equations, Vol. 91. John Wiley & Sons (2011). [Google Scholar]
  18. H.J. Kim, M.A. Fontelos and H.J. Hwang, Capillary oscillations at the exit of a nozzle. IMA J. Appl. Math. 80 (2005) 931–962. [Google Scholar]
  19. D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, Vol. 188. American Mathematical Society (2013). [Google Scholar]
  20. R. Lecaros, J. López-Ríos, J. Ortega and S. Zamorano, The stability for an inverse problem of bottom recovering in water-waves. Inverse Probl. 36 (2020) 115002. [CrossRef] [Google Scholar]
  21. S. Micu and E. Zuazua, An introduction to the controllability of partial differential Equations, in Quelques questions de théorie du contròle, edited by T. Sari. Collection Travaux en Cours Hermann (2004) 69–157. [Google Scholar]
  22. S. Mottelet, Controllability and stabilization of a canal with wave generators. SIAM J Control Optim. 38 (2000) 711–735. [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Nersisyan, D. Dutykh and E. Zuazua, Generation of 2D water waves by moving bottom disturbances. IMA J. Appl. Math. 80 (2014) 1235–1253. [Google Scholar]
  24. J.A. Nicolás, Effects of static contact angles on inviscid gravity-capillary waves. Phys. Fluids 17 (2005) 022101. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.M. Reid, Control time for gravity-capillary waves on water. SIAM J. Control Optim. 33 (1995) 1577–1586. [CrossRef] [MathSciNet] [Google Scholar]
  26. R.M. Reid and D.L. Russell, Boundary control and stability of linear water waves. SIAM J. Control Optim. 23 (1985) 111–121. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Su, M. Tucsnak and G. Weiss, Stabilizability properties of a linearized water waves system. Syst. Control Lett. 139 (2020) 104672. [CrossRef] [Google Scholar]
  28. P. Su, M. Tucsnak and G. Weiss, Strong stabilization of small water waves in a pool. IFAC-PapersOnLine 54 (2021) 378–383. [CrossRef] [Google Scholar]
  29. F.G. Tricomi, Integral Equations. Dover Publications, New York (1985). [Google Scholar]
  30. E. Zuazua, An Introduction to Exact Controllability for Distributed Systems. Lecture notes. University of Lisbon, Lisbon, Portugal (1990). [Google Scholar]
  31. E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations: Evolutionary Equations, Vol. 3. Elsevier (2007) 527–621. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.