Open Access
Volume 29, 2023
Article Number 44
Number of page(s) 37
Published online 09 June 2023
  1. M.A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323 (1981) 53–67. [Google Scholar]
  2. G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Edited by, in Calculus of Variations and Partial Differential Equations. edited by L. Ambrosio and N. Dancer. Springer Verlag, Berlin (2000) 95–114. [Google Scholar]
  3. R. Alicandro, M. Cicalese and M. Ruf, Domain formation in magnetic polymer composites: an approach via stochastic homogenization. Arch. Ration. Mech. Anal. 218 (2015) 945–984. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, I: integral representation and Γ-convergence, J. Math. Pures. Appl. 69 (1990) 285–306. [MathSciNet] [Google Scholar]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  6. N. Ansini, A. Braides and V. Chiadó Piat, Gradient theory of phase transitions in composite media, Proc. R. Soc. Edind. 133A (2003) 265–296. [CrossRef] [Google Scholar]
  7. A. Bach, T. Esposito, R. Marziani and C.I. Zeppieri, Gradient damage models for heterogeneous materials, Siam J. Math. Anal., Arxiv preprint: 2205.13966 (2023). [Google Scholar]
  8. A. Bach, T. Esposito, R. Marziani and C.I. Zeppieri, Interaction between oscillations and singular perturbations in a one-dimensional phase-field model. Res. Math. Mater. Sc. (2022). [Google Scholar]
  9. A. Bach, R. Marziani and C.I. Zeppieri, Γ-Convergence and stochastic homogenisation of singularly perturbed elliptic functionals, arXiv:2102.09872 (2021). [Google Scholar]
  10. S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 67–90. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.C. Barroso and I. Fonseca, Anisotropic singular perturbations – the vectorial case. Proc. Roy. Soc. Edinb. Sect. A 124 (1994) 527–571. [CrossRef] [Google Scholar]
  12. A. Braides and C.I. Zeppieri, Multiscale analysis of a prototypical model for the interaction between microstructure and surface energy. Interfaces Free Bound. 11 (2009) 61–118. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Bouchittè, Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Opt. 21 (1990) 289–314. [CrossRef] [Google Scholar]
  14. G. Bouchittè, I. Fonseca, G. Leoni and L. Mascarenhas, A global method for relaxation in W1,p and SBVp, Arch. Ration. Mech. Anal. 165 (2002) 187–242. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Braides, M. Cicalese and M. Ruf, Continuum limit and stochastic homogenization of discrete ferromagnetic thin films. Anal. PDE 11 (2018) 499–553. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, New York (1998). [Google Scholar]
  17. F. Cagnetti, G. Dal Maso, L. Scardia and C.I. Zeppieri, Γ-convergence of free-discontinuity problems, Ann. Inst. H. Poincaré Anal. Non Linéaire. 36 (2019) 1035–1079. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Cagnetti, G. Dal Maso, L. Scardia and C.I. Zeppieri, Stochastic homogenisation of free discontinuity problems, Arch. Ration. Mech. Anal. 233 (2019) 935–974. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.W. Cahn, and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Ph.m 28 (1958) 258–267. [CrossRef] [Google Scholar]
  20. M. Chermisi, G. Dal Maso, I. Fonseca and G. Leoni, Singular perturbation models in phase transitions for second-order materials. Indiana Univ. Math. J. 60 (2011) 367–409. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Cicalese, E. Spadaro and C.I. Zeppieri, Asymptotic analysis of a second-order singular perturbation model for phase transitions. Calc. Var. Part. Diff. Equ. 41 (2011) 127–150. [CrossRef] [Google Scholar]
  22. R. Cristoferi, I. Fonseca and L. Ganedi Homogenization and phase separation with space dependent wells -the subcritical case. Arxiv preprint: 2205.12893 (2022). [Google Scholar]
  23. R. Cristoferi, I. Fonseca, A. Hagerty and C. Popovici, A homogenization result in the gradient theory of phase transitions. Interfaces Free Boundaries 21 (2019) 367–408. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Dal Maso, An introduction to Γ-convergence, in Progress in Nonlinear Differential Equations and their Applications, Vol. 8. Birkhäuser Boston Inc., Boston, MA (1993). [Google Scholar]
  25. G. Dal Maso and L. Modica, Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368 (1986) 28–42. [MathSciNet] [Google Scholar]
  26. I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31 (2000) 1121–1143. [CrossRef] [MathSciNet] [Google Scholar]
  27. I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.E. Gurtin, Some results and conjectures in the gradient theory of phase transitions, in Metastability and Incompletely Posed Problems (Minneapolis, Minn., 1985). Vol. 3 of IMA Vol. Math. (1987) 135–146. [CrossRef] [Google Scholar]
  29. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142. [CrossRef] [Google Scholar]
  30. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. 14-B (1977) 285–299. [Google Scholar]
  31. P.S. Morfe, Surface tension and Γ-convergence of Van der Waals-Cahn-Hilliard phase transitions in stationary ergodic media. J. Stat. Phys. 181 (2020) 2225–2256. [CrossRef] [MathSciNet] [Google Scholar]
  32. N.C. Owen and P. Sternberg, Nonconvex variational problems with anisotropic perturbations. Nonlinear Anal. 16 (1991) 705–719. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Ruf and T. Ruf, Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023) 253–303. [CrossRef] [Google Scholar]
  34. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101 (1988) 209–260. [CrossRef] [Google Scholar]
  35. J.D. Van der Waals, The thermodynamics theory of capillarity under the hypothesis of a continuous variation of density. Verhaendel kronik. Akad. Weten. Amsterdam 1 (1893) 386–398. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.