Open Access
Volume 29, 2023
Article Number 36
Number of page(s) 33
Published online 24 May 2023
  1. G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements. Inverse Probl. 18 (2002) 1333–1353. [Google Scholar]
  2. G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 755–806. [Google Scholar]
  3. G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25 (2009) 123004. [Google Scholar]
  4. H. Ammari and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory. Springer Science and Business Media (2007) [Google Scholar]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000) [Google Scholar]
  6. A. Aspri, A phase-field approach for detecting cavities via a Kohn-Vogelius type functional. Inverse Problems 38 (2022) 41. [Google Scholar]
  7. A. Aspri, E. Beretta, C. Cavaterra, E. Rocca and M. Verani, Identification of cavities and inclusions in linear elasticity with a phase-field approach. Appl. Math. Optim. (2022) [Google Scholar]
  8. H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer 408 (2011). [Google Scholar]
  9. E. Beretta, M.C. Cerutti and D. Pierotti, On a nonlinear model in domains with cavities arising from cardiac electrophysiology. Inverse Probl. 38 (2022) 16. [Google Scholar]
  10. E. Beretta, M.C. Cerutti, A. Manzoni and D. Pierotti, An asymptotic formula for boundary potential perturbations in a semilinear elliptic equation related to cardiac electrophysiology. Math. Models Methods Appl. Sci. 26 (2016) 645–670 [Google Scholar]
  11. E. Beretta, A. Manzoni and L. Ratti, A reconstruction algorithm based on topological gradient for an inverse problem related to a semilinear elliptic boundary value problem. Inverse Probl. 33 (2017) 035010. [Google Scholar]
  12. E. Beretta, L. Ratti and M. Verani, A phase-field approach for the interface reconstruction in a nonlinear elliptic problem arising from cardiac electrophysiology. Commun. Math. Sci. (2018) 16. [Google Scholar]
  13. L. Blank and C. Rupprecht, An extension of the projected gradient method to a Banach space setting with application in structural topology optimization. SIAM J. Control Optim. 55 (2017) 1481–1499. [Google Scholar]
  14. M.L. Borgato and L. Pepe, Approssimabilita’ degli aperti di ℝN di perimetro finito. Ann. Univ. Ferrara - Sez. VII - Sci. Mater. XXIV (1978) 125–135. [Google Scholar]
  15. D. Borman, D.B. Ingham, B.T. Johansson and D. Lesnic, The method of fundamental solutions for detection of cavities in eit. J. Integral Equ. Appl. (2009) 381–404. [Google Scholar]
  16. B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization loads. ESAIM: Control Optim. Calc. Var. 9 (2003). [Google Scholar]
  17. A. Braides, Gamma Convergence for Beginners. Oxford University Press (2002). [CrossRef] [Google Scholar]
  18. A. Braides, Local Minimization, Variational Evolution and Γ-convergence. Springer 2094 (2014). [Google Scholar]
  19. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). [CrossRef] [Google Scholar]
  20. D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Vol. 65 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (2005). [Google Scholar]
  21. M. Burger, Levenberg-marquardt level set methods for inverse obstacle problems. Inverse Probl. 20 (2003) 259. [Google Scholar]
  22. M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447–1466. [Google Scholar]
  23. V. Candiani, J. Dardé, H. Garde and N. Hyvönen, Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography. SIAM J. Math. Anal. 52 (2020) 6234–6259. [Google Scholar]
  24. A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. Commun. Part. Diff. Equ. 22 (1997) 811–840. [Google Scholar]
  25. P. Colli Franzone, L.F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology. Springer-Verlag Italia, Milano, Modeling, Simulation and Applications (MS&A) Series Vol. 13, 2014. [CrossRef] [Google Scholar]
  26. G. Comi and M. Torres, One-sided approximation of sets of finite perimeter. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni 28 (2017) 181–190. [CrossRef] [Google Scholar]
  27. M. Costabel, On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains (English summary). Math. Nachr. 292 (2019) 2165–2173. [Google Scholar]
  28. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Basel (1993). [CrossRef] [Google Scholar]
  29. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101–135. [Google Scholar]
  30. K. Deckelnick, Ch. Elliot and V. Styles, Double obstacle phase field approach to an inverse problem for a discontinuous diffusion coefficient. Inverse Probl. 32 (2016) 045008. [Google Scholar]
  31. L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CPC Press (1992). [Google Scholar]
  32. A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Rational Mech. Anal. (1989) 299–326. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Frontera, S. Pagani, L.R. Limite, A. Hadjis, A. Manzoni, L. Dede’, A. Quarteroni and P. Della Bella, Outer loop and isthmus in ventricular tachycardia circuits: characteristics and implications. Heart Rhythm 17 (2020). [Google Scholar]
  34. S. Fucik and A. Kufner, Nonlinear Differential Equations. Elsevier (1980). [Google Scholar]
  35. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA (1985). [Google Scholar]
  36. M. Hanke and Martin Brühl, Recent progress in electrical impedance tomography. Inverse Probl. 19 (2003) S65. [CrossRef] [Google Scholar]
  37. A. Henrot, M. Pierre, Shape Variation and Optimization. Ageometrical Analysis. European Mathematical Society. [Google Scholar]
  38. M. Hintermuller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [Google Scholar]
  39. M. Ikehata and T. Ohe, A numerical method for finding the convex hull of polygonal cavities using the enclosure method. Inverse Probl. 18 (2002) 111. [Google Scholar]
  40. D.S. Jerison and C.E. Kenig, The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4 (1981) 203–207. [CrossRef] [Google Scholar]
  41. B. Jin and J. Zou, Numerical estimation of piecewise constant Robin coefficient. SIAM J. Control Optim. 48 (2009) 1977–2002. [Google Scholar]
  42. R. Kress, Inverse problems and conformal mapping. Complex Variables Elliptic Eq. 57 (2012) 301–316. [Google Scholar]
  43. R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Probl. 21 (2005) 1207. [Google Scholar]
  44. K.F. Lam and I. Yousept, Consistency of a phase field regularisation for an inverse problem governed by a quasilinear Maxwell system. Inverse Probl. 36 (2020) 045011. [Google Scholar]
  45. A. Lopez-Perez, R. Sebastian, M. Izquierdo, R. Ruiz, M. Bishop and J.M. Ferrero, Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia. Front. Physiol. 10 (2019) 580. [Google Scholar]
  46. G. Menegatti and L. Rondi, Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Probl. Imaging 7 (2013) 1307–1329. [CrossRef] [MathSciNet] [Google Scholar]
  47. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [Google Scholar]
  48. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (1977) 285–299. [Google Scholar]
  49. A. Munnier and K. Ramdani, Conformal mapping for cavity inverse problem: an explicit reconstruction formula. Appl. Anal. 96 (2017) 108–129. [Google Scholar]
  50. F. Negri, redbKIT Version 2.2, http:/ Copyright (c) 2015–2017, Ecole Polytechnique Fédérale de Lausanne (EPFL) All rights reserved, 2016. [Google Scholar]
  51. J. Relan, P. Chinchapatnam, M. Sermesant, K. Rhode, M. Ginks, H. Delingette, C.A. Rinaldi, R. Razavi and N. Ayache, Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1 (2011) 396–407. [CrossRef] [PubMed] [Google Scholar]
  52. W. Ring and L. Rondi, Reconstruction of cracks and material losses by perimeter-like penalizations and phase-field methods: numerical results. Interfaces Free Boundaries 13 (2011) 353–371. [MathSciNet] [Google Scholar]
  53. L. Rondi, Reconstruction of material losses by perimeter penalization and phase-field methods. J. Diff. Equ. 251 (2011) 150–175. [Google Scholar]
  54. P. Sternberg and R.L. Jerrard, Critical points via Γ-convergence: general theory and applications. J. Eur. Math. Soc. 11 (2009) 705–753. [Google Scholar]
  55. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59 (1984) 572–611. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.