Open Access
Volume 29, 2023
Article Number 47
Number of page(s) 24
Published online 19 June 2023
  1. S. Brendle, Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes E'tud. Sci. (2013) 247–269. [CrossRef] [Google Scholar]
  2. E. De Giorgi, Nuovi teoremi relativi alle misure (r–1)-dimensionali in uno spazio ad r dimensioni. Ric. Mat. 4 (1955) 95–113. [Google Scholar]
  3. E. De Giorgi, Su una teoria generale della misura (r–1)-dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura Appl. 36 (1954) 191–213. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. De Lellis, Rectifiable sets, densities and tangent measures. European Mathematical Society (EMS), Zürich (2008) vi + 126. [Google Scholar]
  5. A. De Rosa, S. Kolasiński and M. Santilli, Uniqueness of critical points of the anisotropic isoperimetric problem for finite perimeter sets. Arch. Ration. Mech. Anal. 238 (2020) 1157–1198. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Delgadino and F. Maggi, Alexandrov’s theorem revisited. Anal. PDE 12 (2019) 1613–1642. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL (2015) xiv + 299. [Google Scholar]
  8. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93 (1959) 418–491. [Google Scholar]
  9. D. Hug and M. Santilli, Curvature measures and soap bubbles beyond convexity. Adv. Math. 411 (2022) 108802. [CrossRef] [Google Scholar]
  10. E. Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space. Geom. Funct. Anal. 19 (2009) 1101–1118. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Vol. 135. Cambridge University Press, Cambridge (2012) xix + 454. [Google Scholar]
  12. F. Maggi and M. Santilli, Rigidity and compactness with constant mean curvature in warped product manifolds. Preprint at [Google Scholar]
  13. U. Menne and M. Santilli, A geometric second-order-rectifiable stratification for closed subsets of Euclidean space. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (2019) 1185–1198. [MathSciNet] [Google Scholar]
  14. S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures (1991). [Google Scholar]
  15. P. Petersen, Riemannian Geometry. 3rd ed. Vol. 171. Grad. Texts Math. Springer, Cham (2016). [CrossRef] [Google Scholar]
  16. R. Reilly. Geometric applications of the solvability of Neumann problems on a Riemannian manifold. Arch. Ration. Mech. Anal. 75 (1980) 23–29. [CrossRef] [Google Scholar]
  17. A. Ros, Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoam. 3.3–4 (1987) 447–453. [Google Scholar]
  18. M. Santilli, Fine properties of the curvature of arbitrary closed sets. Ann. Mat. Pura Appl. 199 (2020) 1431–1456. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Schätzle, Quadratic tilt-excess decay and strong maximum principle for varifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 3 (2004) 171–231. [MathSciNet] [Google Scholar]
  20. L. Simon, Lectures on Geometric Measure Theory. Vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983). [Google Scholar]
  21. P. Sternberg and K. Zumbrun, A singular local minimizer for the volume-constrained minimal surface problem in a nonconvex domain. Proc. Am. Math. Soc. 146 (2018) 5141–5146. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.