Open Access
Volume 29, 2023
Article Number 71
Number of page(s) 24
Published online 22 August 2023
  1. G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives. Math. Models Methods Appl. Sci. 29 (2019) 1901–2005. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and In the Space of Probability Measures. Springer Science & Business Media (2008). [Google Scholar]
  3. M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Structure stability of congestion in traffic dynamics. Jap. J. Ind. Appl. Math. 11 (1994) 203. [CrossRef] [Google Scholar]
  4. A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws. Preprint (2020). [Google Scholar]
  5. N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53 (2011) 409–463. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Bongini, M. Fornasier and F. Rossi, Mean-field pontryagin maximum principle. Transport. Res. Rec. 175 (2017) 1–38. [Google Scholar]
  7. R. Borsche, A. Klar and M. Zanella, Kinetic-controlled hydrodynamics for multilane traffic models. Phys. A 587 (2022) 126486. [CrossRef] [Google Scholar]
  8. M.S. Branicky, V.S. Borkar and S.K. Mitter, A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automatic Control 43 (1998) 31–45. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Cañizo, J. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21 (2009) 07. [Google Scholar]
  10. J.A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Springer (2010) 297–336. [CrossRef] [Google Scholar]
  11. E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9 (2011) 155–182. [MathSciNet] [Google Scholar]
  12. F. Cucker and S. Smale, Emergent behavior in flocks. IEEE Trans. Automat. Contr. 52 (2007) 852–862. [CrossRef] [Google Scholar]
  13. M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: a discrete kinetic theory approach. Math. Models Methods Appl. Sci. 17 (2007) 901–932. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.L. Delle Monache, T. Liard, A. Rat, R. Stern, R. Bhadani, B. Seibold, J. Sprinkle, D.B. Work and B. Piccoli, Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles. Springer International Publishing (2019), 275–299. [Google Scholar]
  15. S. Engell, S. Kowalewski, C. Schulz and O. Stursberg, Continuous-discrete interactions in chemical processing plants. Proc. IEEE 88 (2000) 1050–1068. [CrossRef] [Google Scholar]
  16. A. Festa and S. Göttlich, A mean field game approach for multi-lane traffic management. IFAC-PapersOnLine 51 (2018) 793–798. [CrossRef] [Google Scholar]
  17. M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 372 (2014) 20130400. [CrossRef] [PubMed] [Google Scholar]
  18. M. Fornasier and F. Solombrino, Mean-field optimal control. ESAIM: COCV 20 (2014) 1123–1152. [CrossRef] [EDP Sciences] [Google Scholar]
  19. M. Garavello and B. Piccoli, Hybrid necessary principle. SIAM J. Control Optim. 43 (2005) 1867–1887. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9 (1961) 545–567. [CrossRef] [Google Scholar]
  21. R. Goebel, R.G. Sanfelice and A.R. Teel, Hybrid dynamical systems. IEEE Control Syst. Mag. 29 (2009) 28–93. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer (2016) 1–144. [Google Scholar]
  23. X. Gong, B. Piccoli and G. Visconti, Mean-field of optimal control problems for hybrid model of multilane traffic. IEEE Control Syst. Lett. 5 (2021) 1964–1969. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Herty, R. Illner, A. Klar and V. Panferov, Qualitative properties of solutions to systems of Fokker–Planck equations for multilane traffic flow. Transport Theory Stat. Phys. 35 (2006) 31–54. [CrossRef] [Google Scholar]
  25. M. Herty, S. Moutari and G. Visconti, Macroscopic modeling of multilane motorways using a two-dimensional second-order model of traffic flow. SIAM J. Appl. Math. 78 (2018) 2252–2278. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Herty and L. Pareschi, Fokker–Planck asymptotics for traffic flow models. Kinet. Relat. Models 3 (2010) 165–179. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Herty and G. Visconti, Analysis of risk levels for traffic on a multi-lane highway. IFAC-PapersOnLine 51 (2018) 43–48. [CrossRef] [Google Scholar]
  28. H. Holden and N.H. Risebro, Models for dense multilane vehicular traffic. SIAM J. Math. Anal. 51 (2019) 3694–3713. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Hoogendoorn, B. van Arerm and S. Hoogendoorn, Automated driving, traffic flow efficiency, and human factors: literature review. Transp. Res. Record 2422 (2014) 113–120. [CrossRef] [Google Scholar]
  30. R. Illner, A. Klar and T. Materne, Vlasov–Fokker–Planck models for multilane traffic flow. Commun. Math. Sci. 1 (2003) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
  31. E. Kallo, A. Fazekas, S. Lamberty and M. Oeser, Microscopic traffic data obtained from videos recorded on a German motorway. Mendeley Data, v1, July 2019. [Google Scholar]
  32. N. Kardous, A. Hayat, S.T. McQuade, X. Gong, S. Truong, P. Arnold, A. Bayen and B. Piccoli, A rigorous multi-population multi-lane hybrid traffic model and its mean-field limit for dissipation of waves via autonomous vehicles. Transportation Research Board (2020). Researchgate DOI: [Google Scholar]
  33. A. Kesting, M. Treiber and D. Helbing, General lane-changing model mobil for car-following models. Transport. Res. Record 1999 (2007) 86–94. [CrossRef] [Google Scholar]
  34. A. Klar and R. Wegener, Enskog-like kinetic models for vehicular traffic. J. Stat. Phys. 87 (1997) 91. [CrossRef] [Google Scholar]
  35. K. Konishi, H. Kokame and K. Hirata, Decentralized delayed-feedback control of an optimal velocity traffic model. Eur. Phys. J. B Condensed Matter Complex Syst. 15 (2000) 715–722. [CrossRef] [Google Scholar]
  36. S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus. SIAM Rev. 56 (2014) 577–621. [CrossRef] [MathSciNet] [Google Scholar]
  37. S.L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis. Transport. Res. 9 (1975) 225–235. [CrossRef] [Google Scholar]
  38. D.L. Pepyne and C.G. Cassandras, Optimal control of hybrid systems in manufacturing. Proc. IEEE 88 (2000) 1108–1123. [CrossRef] [Google Scholar]
  39. B. Piccoli, A. Tosin and M. Zanella, Model-based assessment of the impact of driver-assist vehicles using kinetic theory. Z. Angew. Math. Phys. 71 (2020). [CrossRef] [PubMed] [Google Scholar]
  40. B. Piccoli, Hybrid systems and optimal control, in Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), Vol. 1. IEEE (1998) 13–18. [CrossRef] [Google Scholar]
  41. B. Piccoli and F. Rossi, Generalized wasserstein distance and its application to transport equations with source. Arch. Rational Mech. Anal. 211 (2014) 335–358. [CrossRef] [MathSciNet] [Google Scholar]
  42. B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models. Encyclop. Complex. Syst. Sci. 22 (2009) 9727–9749. [CrossRef] [Google Scholar]
  43. I. Prigogine, A Boltzmann-like approach to the statistical theory of traffic Flow, in Theory of Traffic Flow, edited by R. Herman. Elsevier, Amsterdam (1961) 158–164. [Google Scholar]
  44. A. Reuschel, Vehicle movements in a platoon. Oesterreichisches Ingenieur-Archir 4 (1950) 193–215. [Google Scholar]
  45. A. Reuschel, Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle. Z. Oesterreich. Ing. Arch.-Vereines 95 (1950) 50–62. [Google Scholar]
  46. J. Song and S. Karni, A second order traffic flow model with lane changing. J. Sci. Comput. 81 (2019) 1429–1445. [CrossRef] [MathSciNet] [Google Scholar]
  47. R.E. Stern, S. Cui, M.L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle and D.B. Work, Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transport. Res. Part C 89 (2018) 205–221. [CrossRef] [Google Scholar]
  48. A.B. Sukhinova, M.A. Trapeznikova, B.N. Chetverushkin and N.G. Churbanova, Two-dimensional macroscopic model of traffic flows. Math. Models Comput. Simul. 1 (2009) 669–676. [CrossRef] [Google Scholar]
  49. C. Tomlin, G.J. Pappas and S. Sastry, Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Trans. Automatic Control 43 (1998) 509–521. [CrossRef] [MathSciNet] [Google Scholar]
  50. A. Tosin and M. Zanella, Uncertainty damping in kinetic traffic models by driver-assist controls. Math. Control Relat. Fields (2021) 681–713. [CrossRef] [MathSciNet] [Google Scholar]
  51. T. Trimborn, L. Pareschi and M. Frank, Portfolio optimization and model predictive control: a kinetic approach. Discrete Cont. Dyn.-B 24 (2019) 6209–6238. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.