Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 30
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2024019
Published online 12 April 2024
  1. N.M. Laird and J.H. Ware, Random-effects models for longitudinal data. Biometrics 38 (1982) 963–974. [CrossRef] [PubMed] [Google Scholar]
  2. M. Lavielle, Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools. CRC Press (2014). [CrossRef] [Google Scholar]
  3. G. Verbeke, Linear mixed models for longitudinal data, in Linear Mixed Models in Practice. Springer (1997) 63–153. [Google Scholar]
  4. J.C. Pinheiro and D.M. Bates, Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Computat. Graph. Stat. 4 (1995) 12–35. [CrossRef] [Google Scholar]
  5. E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models. Computat. Stat. Data Anal. 49 (2005) 1020–1038. [CrossRef] [Google Scholar]
  6. M. Prague, D. Commenges, J. Guedj, J. Drylewicz and R. Thiébaut, NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations. Comput. Methods Programs Biomed. 111 (2013) 447–458. [CrossRef] [Google Scholar]
  7. H. Wu, Statistical methods for HIV dynamic studies in aids clinical trials. Stat. Methods Med. Res. 14 (2005) 171–192. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. M.J. Denwood, Runjags: a R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71 (2016) 1–25. [CrossRef] [Google Scholar]
  9. B. Carpenter, A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li and A. Riddell, Stan: a probabilistic programming language. J. Stat. Softw. 76 (2017) 2017. [CrossRef] [Google Scholar]
  10. S.B. Duffull, C.M.J. Kirkpatrick, B. Green and N.H.G. Holford, Analysis of population pharmacokinetic data using NONMEM and WinBUGS. J. Biopharm. Stat. 15 (2004) 53–73. [CrossRef] [Google Scholar]
  11. X. Liu and Y. Wang, Comparing the performance of FOCE and different expectation-maximization methods in handling complex population physiologically-based pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. 43 (2016) 359–370. [CrossRef] [PubMed] [Google Scholar]
  12. E.L. Plan, A. Maloney, F. Mentré, M.O. Karlsson and J. Bertrand. Performance comparison of various maximum likelihood nonlinear mixed-effects estimation methods for dose–response models. AAPS J. 14 (2012) 420–432. [CrossRef] [Google Scholar]
  13. E. Grenier, V. Louvet and P. Vigneaux, Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE. ESAIM: Math. Model. Numer. Anal. 48 (2014) 1303–1329. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. A. Collin, M. Prague and P. Moireau, Estimation for dynamical systems using a population-based Kalman Filter—applications in computational biology. Math. Action 11 (2022) 213–242. [CrossRef] [Google Scholar]
  15. P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 1987 (2008) 659–677. [CrossRef] [Google Scholar]
  16. P. Moireau and D. Chapelle, Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: Control Optim. Calc. Var. 17 (2011) 380–405. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. R. Bellman, Dynamic programming and Lagrange multipliers. Proc. Natl. Acad. Sci. U.S.A. 42 (1956) 767. [CrossRef] [PubMed] [Google Scholar]
  18. D. Luenberger, Determining the State of a Linear with Observers of Low Dynamic Order. Ph.D. thesis, Stanford University (1963). [Google Scholar]
  19. D. Pham, Stochastic methods for sequential data assimilation in strongly nonlinear systems. Monthly Weather Rev. 129 (2001) 1194–1207. [CrossRef] [Google Scholar]
  20. D.T. Pham, J. Verron and C. M. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16 (1998) 323–340. [CrossRef] [Google Scholar]
  21. D. Simon, Optimal State Estimation: Kalman, H, and Nonlinear Approaches. Wiley-Interscience (2006). [Google Scholar]
  22. K. Law, A. Stuart and K. Zygalakis, Data assimilation: a mathematical introduction, Vol. 62 of Texts in Applied Mathematics. Springer, Cham (2015). [Google Scholar]
  23. S. Julier and J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls, 1997. [Google Scholar]
  24. A. Collin, B.P. Hejblum, C. Vignals, L. Lehot, R. Thiébaut, P. Moireau and M. Prague, Using a population-based Kalman estimator to model the COVID-19 epidemic in France: estimating associations between disease transmission and non-pharmaceutical interventions. Annabelle Collin, Boris P. Hejblum, Carole Vignals, Laurent Lehot, Rodolphe Thiébaut, Philippe Moireau and Mélanie Prague. Int. J. Biostat. (2022) https://doi.org/10.1515/ijb-2022-0087. [Google Scholar]
  25. A. Collin, D. Chapelle and P. Moireau, A Luenberger observer for reaction-diffusion models with front position data. J. Computat. Phys. 300 (2015) 288–307. [CrossRef] [Google Scholar]
  26. T. Michel, J. Fehrenbach, V. Lobjois, J. Laurent, A. Gomes, T. Colin and C. Poignard, Mathematical modeling of the proliferation gradient in multicellular tumor spheroids. J. Theoret. Biol. 458 (2018) 133–147. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Collin, H. Bruhier, J. Kolosnjaj, M. Golzio, M.-P. Rols and C. Poignard, Spatial mechanistic modeling for prediction of 3D multicellular spheroids behavior upon exposure to high intensity pulsed electric fields. AIMS Bioeng. 9 (2022) 102–122. [CrossRef] [Google Scholar]
  28. C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J.P. Mochel, M. Mastri, C. Poignard, J.M. Ebos and S. Benzekry, Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Computat. Biol. 16 (2020) e1007178. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.