Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 21
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2024007
Published online 04 April 2024
  1. R. Adams and J. Fournier, Real interpolation of Sobolev spaces on subdomains of ℝn. Can. J. Math. 30 (1978) 190–214. [CrossRef] [Google Scholar]
  2. S. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084–1095. [Google Scholar]
  3. J. Bedrossian, N. Rodrìguez and A. Bertozzi, Local and global well-posedness for an aggregation equation and Patlak—Keller—Segel models with degenerate diffusion. Nonlinearity 24 (2011) 1683–1714. [CrossRef] [MathSciNet] [Google Scholar]
  4. C.P. Brangwynne and A.A. Hyman, Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev. Cell 21 (2011) 14–16. [CrossRef] [Google Scholar]
  5. H. Brezis and P. Mironescu, Where Sobolev interacts with Gagliardo-–Nirenberg. J. Funct. Anal. 277 (2019) 2839–2864. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.W. Cahn and J.E. Hilliard, Free energy of a non-uniform system. I. Interfacial free energy. J. Chew,. Phys. 28 (1958) 258–267. [CrossRef] [Google Scholar]
  7. J.A. Carrillo, C. Elbar and J. Skrzeczkowski, Degenerate Cahn—Hilliard systems: from nonlocal to local. (2023) Preprint arXiv:2303.11929. [Google Scholar]
  8. L. Cherfils, A. Miranville and S. Zelik, The Cahn—Hilliard equation with logarithmic potentials. Milan J. Math. 79 (2011) 561–596. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Colli, G. Gilardi and J. Sprekels, Optimal velocity control of a viscous Cahn—Hilliard system with convection and dynamic boundary conditions. SIAM J. Control Optim. 56 (2018) 1665–1691. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Colli, G. Gilardi and J. Sprekels, Optimal velocity control of a convective Cahn—Hilliard system with double obstacles and dynamic boundary conditions: a ‘deep quench’ approach. J. Convex Anal. 26 (2019) 485–514. [MathSciNet] [Google Scholar]
  11. P. Colli, A. Signori and J. Sprekels, Optimal control problems with sparsity for phase field tumor growth models involving variational inequalities. J. Optim. Theory Appl. (2022). doi.org/10.1007/s10957-022-02000-7. [Google Scholar]
  12. V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical. Modeling Approach. Cambridge University Press, Leiden (2010). [Google Scholar]
  13. E. Davoli, L. Scarpa and L. Trussardi, Nonlocal-to-local convergence of Cahn—Hilliard equations: Neumann boundary conditions and viscosity terms. Arch. Ration. Mech. Anal. 239 (2021) 117–149. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. E. Davoli, L. Scarpa and L. Trussardi, Local asymptotics for nonlocal convective Cahn—Hilliard equations with W1,1 kernel and singular potential. J. Diff. Equ. 289 (2021) 35–58. [CrossRef] [Google Scholar]
  15. E. Dolgin, What lava lamps and vinaigrette can teach us about cell biology. Nature 555 (2018) 300–302. [CrossRef] [PubMed] [Google Scholar]
  16. C. Elbar and J. Skrzeczkowski, Degenerate Cahn—Hilliard equation: from nonlocal to local. J. Diff. Equ. 364 (2023) 576–611. [CrossRef] [Google Scholar]
  17. C.M. Elliott and H. Garcke, On the Cahn—Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404–423. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Fornoni, Optimal distributed control for a viscous non-local tumour growth model. App. Math. Opt. 89 (2024) doi: 10.1007/s00245-023-10076-4. [Google Scholar]
  19. S. Frigeri, On a nonlocal Cahn—Hilliard/Navier—Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities. Ann. Henri Poincare 38 (2021) 647–687. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Frigeri, C.G. Gal and M. Grasselli, Regularity results for the nonlocal Cahn-Hilliard equattion with singular potential and degenerate mobility. J. Diff. Equ. 287 (2021) 295–328. [CrossRef] [Google Scholar]
  21. S. Frigeri, C.G. Gal and M. Grasselli, On nonlocal Cahn—Hilliard—Navier—Stokes systems in two dimensions. J. Nonlinear Sci. 26 (2016) 847–893. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Frigeri, C.G. Gal, M. Grasselli and J. Sprekels, Two-dimensional nonlocal Cahn—Hilliard—Navier—Stokes systems with variable viscosity, degenerate mobility and singular potential. Nonlinearity 32 (2019) 678. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Frigeri and M. Grasselli, Nonlocal Cahn—Hilliard—Navier—Stokes systems with singular potentials. Dyn. Partial Diff. Equ. 9 (2012) 273–304. [CrossRef] [Google Scholar]
  24. S. Frigeri and M. Grasselli, Global and trajectory attractors for a nonlocal Cahn—Hilliard—Navier—Stokes system. J. Dyn. Diff. Equ. 24 (2012) 827—856. [CrossRef] [Google Scholar]
  25. S. Frigeri, M. Grasselli and J. Sprekels, Optimal distributed control of two-dimensional nonlocal Cahn—Hilliard—Navier—Stokes systems with degenerate mobility and singular potential. App. Math. Opt. 81 (2020) 899–931. [CrossRef] [Google Scholar]
  26. S. Frigeri, M. Grasselli and P. Krejčí, Strong solutions for two-dimensional nonlocal Cahn—Hilliard— Navier—Stokes systems. J. Diff. Equ. 255 (2013) 2587–2614. [CrossRef] [Google Scholar]
  27. S. Frigeri, K.F. Lam and A. Signori, Strong well-posedness and inverse identification problem of a non-local phase field tumor model with degenerate mobilities. Eur. J. Appl. Math. 33 (2022) 267–308. [CrossRef] [Google Scholar]
  28. S. Frigeri, E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn—Hilliard/Navier—Stokes system in two dimensions. SIAM J. Control Optim. 54 (2016) 221–250. [CrossRef] [MathSciNet] [Google Scholar]
  29. C.G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn—Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Diff. Equ. 263 (2017) 5253–5297. [CrossRef] [Google Scholar]
  30. C.G. Gal, A. Giorgini and M. Grasselli, The separation property for 2D Cahn—Hilliard equations: local, nonlocal and fractional energy cases. Discrete Contin. Dyn. Syst. 43 (2023) 2270–2304. [CrossRef] [MathSciNet] [Google Scholar]
  31. C.G. Gal, A. Giorgini, M. Grasselli and A. Poiatti, Global well-posedness and convergence to equilibrium for the Abels-Garcke-Grün model with nonlocal free energy. J. Math. Pures Appl. 178 (2023) 46–109. [CrossRef] [MathSciNet] [Google Scholar]
  32. C.G. Gal and A. Poiatti, Unified framework for the separation property in binary phase segregation processes with singular entropy densities, European J. Appl. Math. (2023) to appear (see also Researchgate preprint doi: 10.13140/RG.2.2.35972.30089/1) [Google Scholar]
  33. H. Garcke, K.F. Lam and A. Signori, Sparse optimal control of a phase field tumour model with mechanical effects. SIAM J. Control Optim. 59 (2021) 1555–1580. [CrossRef] [MathSciNet] [Google Scholar]
  34. G. Giacomin and J.L., Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions. Phys. Rev. Lett. 76 (1996) 1094–1097. [CrossRef] [PubMed] [Google Scholar]
  35. G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interations. I. Macroscopic limits. J. Stat. Phys. 87 (1997) 37–61. [CrossRef] [Google Scholar]
  36. G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interations. II. Interface motion. SIAM J. Appl. Math. 58 (1998) 1707–1729. [CrossRef] [MathSciNet] [Google Scholar]
  37. A. Giorgini, On the separation property and the global attractor for the nonlocal Cahn—Hilliard equation in three dimensions (2023) Preprint arXiv:2303.06013. [Google Scholar]
  38. A. Giorgini, M. Grasselli and A. Miranville, The Cahn—Hilliard—Oono equation with singular potential. Math. Models Methods Appl. Sci. 27 (2017) 2485–2510. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Hintermüller and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system. SIAM J. Control Optim. 52 (2014) 747–772. [CrossRef] [MathSciNet] [Google Scholar]
  40. O.A. Ladyženskaja, V.A. Solonnikov, and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type. AMS Transl. Monographs 23, AMS, Providence, RI (1968). [CrossRef] [Google Scholar]
  41. A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math. SIAM, Philadelphia, PA (2019). [Google Scholar]
  42. T. Muramatu, On Besov spaces of functions defined in general regions. Publ. Res. Inst. Math. Sci. 6 (1970) 515–543. [Google Scholar]
  43. A. Poiatti, The 3D strict separation property for the nonlocal Cahn-Hilliard equation with singular potential. Anal. PDE (2022) to appear (see also: Preprint arXiv:2303.07745). [Google Scholar]
  44. J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl. 256 (2001) 405–430. [CrossRef] [MathSciNet] [Google Scholar]
  45. E. Rocca, L. Scarpa and A. Signori, Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis. Math. Models Methods Appl. Sci. 31 (2021) 2643–2694. [CrossRef] [MathSciNet] [Google Scholar]
  46. E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in three dimensions. SIAM J. Control Optim. 53 (2015) 1654–1680. [CrossRef] [MathSciNet] [Google Scholar]
  47. L. Scarpa and A. Signori, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport. Nonlinearity 34 (2021) 3199–3250. [Google Scholar]
  48. J. Sprekels and F. Tröltzsch, Sparse optimal control of a phase field system with singular potentials arising in the modeling of tumor growth. ESAIM Control Optim. Calc. Var. 27 (2021) S26. [CrossRef] [EDP Sciences] [Google Scholar]
  49. J. Sprekels and F. Trültzsch, Second-order sufficient conditions for sparse optimal control of singular Allen-Cahn systems with dynamic boundary conditions. Discrete Contin. Dyn. Syst. S (2023) doi: 10.3934/dcdss.2023163. [Google Scholar]
  50. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd Rev. and enl. ed. Barth, Heidelberg (1995). [Google Scholar]
  51. H. Wu, A review on the Cahn—Hilliard equation: classical results and recent advances in dynamic boundary conditions. J. Electronic Res. Arch. 30 (2022) 2788–2832. [CrossRef] [Google Scholar]
  52. X. Zhao and C. Liu, Optimal control for the convective Cahn-Hilliard equation in 2D case. Appl. Math. Opt. 70 (2014) 61–82. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.