Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 86
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2024074
Published online 08 November 2024
  1. C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem. Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA (1983). [CrossRef] [Google Scholar]
  2. M.M. Lavrentev, V.G. Romanov and S.P. Shishat·skiĭ, Ill-Posed Problems of Mathematical Physics and Analysis. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1986). [CrossRef] [Google Scholar]
  3. X.J. Li and J.M. Yong, Optimal Control Theory for Infinite-Dimensional Systems. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1995). [Google Scholar]
  4. E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations: Evolutionary Equations, Vol. 3. Elsevier Science, Amsterdam (2007) 527–621. [CrossRef] [Google Scholar]
  5. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, New York (1953). [Google Scholar]
  6. L. Escauriaza and L. Vega, Carleman inequalities and the heat operator. II. Indiana Univ. Math. J. 50 (2001) 1149–1169. [CrossRef] [Google Scholar]
  7. L. Escauriaza, F.J. Fernández and S. Vessella, Doubling properties of caloric functions. Appl. Anal. 85 (2006) 205–223. [CrossRef] [MathSciNet] [Google Scholar]
  8. F.H. Lin, A uniqueness theorem for parabolic equations. Commun. Pure Appl. Math. 43 (1990) 127–136. [CrossRef] [MathSciNet] [Google Scholar]
  9. K.D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain. J. Funct. Anal. 259 (2010) 1230–1247. [Google Scholar]
  10. K.D. Phung, L. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014) 477–499. [CrossRef] [MathSciNet] [Google Scholar]
  11. C.-C. Poon, Unique continuation for parabolic equations. Commun. Part. Differ. Equ. 21 (1996) 521–539. [CrossRef] [Google Scholar]
  12. X. Zhang, Unique continuation for stochastic parabolic equations. Differ. Integral Equ. 21 (2008) 81–93. [Google Scholar]
  13. Q. Lü, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems. Inverse Probl. 28 (2012) 045008. [CrossRef] [Google Scholar]
  14. H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations. J. Math. Anal. Appl. 402 (2013) 518–526. [Google Scholar]
  15. Q. Lü and Z. Yin, Unique continuation for stochastic heat equations. ESAIM Control Optim. Calc. Var. 21 (2015) 378–398. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. A. Fernández-Bertolin and J. Zhong, Hardy’s uncertainty principle and unique continuation property for stochastic heat equations. ESAIM Control Optim. Calc. Var. 26 (2020) Paper No. 9. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Q. Lü and Z. Yin, Local state observation for stochastic hyperbolic equations. ESAIM Control Optim. Calc. Var. 26 (2020) Paper No. 79. [Google Scholar]
  18. Z. Liao and Q. Lü, Stability estimate for an inverse stochastic parabolic problem of determining unknown time-varying boundary. Inverse Probl. 40 (2024) Paper No. 045032. [CrossRef] [Google Scholar]
  19. Y. Zhang, Unique continuation estimates for the Kolmogorov equation in the whole space. C. R. Math. Acad. Sci. Paris 354 (2016) 389–393. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Wang, M. Wang, C. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in n. J. Math. Pures Appl. 126 (2019) 144–194. [CrossRef] [MathSciNet] [Google Scholar]
  21. Y. Duan, L. Wang and C. Zhang, Observability inequalities for the heat equation with bounded potentials on the whole space. SIAM J. Control Optim. 58 (2020) 1939–1960. [CrossRef] [MathSciNet] [Google Scholar]
  22. L. Wang and C. Zhang, A uniform bound on costs of controlling semilinear heat equations on a sequence of increasing domains and its application. ESAIM Control Optim. Calc. Var. 28 (2022) Paper No. 8. [Google Scholar]
  23. M. Wang and C. Zhang, Analyticity and observability for fractional order parabolic equations in the whole space. ESAIM Control Optim. Calc. Var. 29 (2023) Paper No. 63. [CrossRef] [EDP Sciences] [Google Scholar]
  24. S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48 (2009) 2191–2216. [Google Scholar]
  25. Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 260 (2011) 832–851. [CrossRef] [MathSciNet] [Google Scholar]
  26. D. Yang and J. Zhong, Observability inequality of backward stochastic heat equations for measurable sets and its applications. SIAM J. Control Optim. 54 (2016) 1157–1175. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16 (2014) 2433–2475. [CrossRef] [MathSciNet] [Google Scholar]
  28. Q. Lü and X. Zhang, Mathematical Control Theory for Stochastic Partial Differential Equations. Probability Theory and Stochastic Modelling. Springer, Cham (2021). [Google Scholar]
  29. L. Escauriaza, Carleman inequalities and the heat operator. Duke Math. J. 104 (2000) 113–127. [CrossRef] [MathSciNet] [Google Scholar]
  30. K.D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15 (2013) 681–703. [CrossRef] [MathSciNet] [Google Scholar]
  31. V. Barbu, A. Răşcanu and G. Tessitore, Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optim. 47 (2003) 97–120. [CrossRef] [MathSciNet] [Google Scholar]
  32. V. Hernández-Santamaría, K. Le Balc’h and L. Peralta, Global null-controllability for stochastic semilinear parabolic equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023) 1415–1455. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.