Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 91 | |
Number of page(s) | 37 | |
DOI | https://doi.org/10.1051/cocv/2024081 | |
Published online | 10 December 2024 |
- R. Coyaud, Study of Approximations of Optimal Transport Problems and Application to Physics. These de doctorat, Paris Est (2021). [Google Scholar]
- A. Corbetta, Multiscale Crowd Dynamics: Physical Analysis, Modeling and Applications. PhD thesis, Eindhoven University of Technology (2016). [Google Scholar]
- B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles. Continuum Mech. Thermodyn. 21 (2009) 85–107. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simu- lotion, edited by A. Muntean and F. Toschi. CISM International Centre for Mechanical Sciences. Springer, Vienna (2014) 1–46. [Google Scholar]
- M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am,. Math. Soc. 27 (1992) 1–67. [CrossRef] [Google Scholar]
- H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Fac. Sci. Eng. 28 (1985) 33–77. [Google Scholar]
- F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Pari. Differ. Equ. 26 (2001) 101–174. [CrossRef] [Google Scholar]
- C. Villani, Optimal transport. Vol. 338 of Grundlehren Der Mathematischen Wissenschaften. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). [CrossRef] [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savare, Gradient Flows. Lectures in Mathematics ETH Zurich. Birkhauser-Verlag, Basel (2005). [Google Scholar]
- N. Gigli, On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance. PhD thesis, Scuola Normale Superiore di Pisa, Pisa (2008). [Google Scholar]
- P.-L. Lions, Jeux a champ moyen, 2006/2007. Conferences au College de France. [Google Scholar]
- W. Gangbo and A. Tudorascu, On differentiability in the Wasserstein space and well-posedness for Hamilton-Jacobi equations. J. Math. Pures Appl. 125 (2019) 119–174. [Google Scholar]
- C. Bertucci and P.L. Lions, An approximation of the squared Wasserstein distance and an application to Hamilton- Jacobi equations, September 2024. Preprint, available at http://arxiv.org/abs/2409.11793. [Google Scholar]
- A. Cosso, F. Gozzi, I. Kharroubi, H. Pham and M. Rosestolato, Master Bellman equation in the Wasserstein space: uniqueness of viscosity solutions. Trans. Am. Math. Soc. 377 (2024) 31–83. [Google Scholar]
- A. Cosso and M. Martini, On smooth approximations in the Wasserstein space. Electron. Commun. Probab. 28 (2023) 1–11. [CrossRef] [Google Scholar]
- S. Daudin, J. Jackson and B. Seeger, Well-posedness of Hamilton-Jacobi equations in the Wasserstein space: non-convex Hamiltonians and common noise, Dec. 2023. Preprint (arXiv:2312.02324). [Google Scholar]
- G. Conforti, R. Kraaij and D. Tonon, Hamilton-Jacobi equations for controlled gradient flows: Cylindrical test functions, 2023. Preprint, available at https://arxiv.org/abs/2302.06571. [Google Scholar]
- G. Conforti, R.C. Kraaij, L. Tamanini and D. Tonon, Hamilton-Jacobi equations for Wasserstein controlled gradient flows: existence of viscosity solutions (2024). [Google Scholar]
- G. Conforti, R.C. Kraaij and D. Tonon, Hamilton-Jacobi equations for controlled gradient flows: The comparison principle. J. Funct. Anal. 284 (2023). 1–53. [Google Scholar]
- J. Feng and M. Katsoulakis, A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions. Arch. Rational Mech. Anal. 192 (2009) 275–310. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Badreddine and H. Frankowska, Solutions to Hamilton-Jacobi equation on a Wasserstein space. Calc. Var. Part. Differ. Equ. 61 (2021) 9. [Google Scholar]
- P. Cardaliaguet and M. Quincampoix. Deterministic differential games under probability knowledge of initial condition. Int. Game Theory Rev. 10 (2008) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
- S. Daudin and B. Seeger, A comparison principle for semilinear Hamilton-Jacobi-Bellman equations in the Wasserstein space, Aug. 2023. Preprint (arXiv:2308.15174). [Google Scholar]
- C. Jimenez, A. Marigonda and M. Quincampoix, Optimal control of multiagent systems in the Wasserstein space. Calc. Var. Part. Differ. Equ. 59 (2020) 1–45. [CrossRef] [Google Scholar]
- A. Marigonda and M. Quincampoix, Mayer control problem with probabilistic uncertainty on initial positions. J. Differ. Equ. 264 (2018) 3212–3252. [Google Scholar]
- L. Ambrosio and J. Feng, On a class of first order Hamilton-Jacobi equations in metric spaces. J. Differ. Equ. 256 (2014) 2194–2245. [CrossRef] [Google Scholar]
- C. Bertucci, Stochastic optimal transport and Hamilton-Jacobi-Bellman equations on the set of probability measures, June 2023. Preprint, available at http://arxiv.org/abs/2306.04283. [Google Scholar]
- F. Jean, O. Jerhaoui and H. Zidani, Deterministic optimal control on Riemannian manifolds under probability knowledge of the initial condition. SIAM J. Math. Anal. 56 (2024) 3326–3356. [CrossRef] [MathSciNet] [Google Scholar]
- O. Jerhaoui, Viscosity Theory of First Order Hamilton Jacobi Equations in Some Metric Spaces. PhD thesis, Institut Polytechnique de Paris, Paris (2022). [Google Scholar]
- G. Fabbri, F. Gozzi and A. Swiech, Stochastic optimal control in infinite dimension. Vol. 82 of Probability Theory and Stochastic Modelling. Springer International Publishing, Cham (2017). [CrossRef] [Google Scholar]
- N. Gigli, Second order analysis on (P2(M),W2). Mem. Am. Math. Soc. 216 (2009) 1–147. [Google Scholar]
- N. Gigli, On the inverse implication of Brenier-McCann theorems and the structure of (P2(M),W2). Methods Applic. Anal. 18 (2011) 127–158. [CrossRef] [Google Scholar]
- F. Santambrogio, Optimal transport for applied mathematicians. Vol. 87 of Progress in Nonlinear Differential Equations and Their Applications. Springer International Publishing, Cham (2015). [CrossRef] [Google Scholar]
- B. Piccoli, Measure differential equations. Arch. Rational Mech. Anal. 233 (2019) 1289–1317. [CrossRef] [MathSciNet] [Google Scholar]
- B. Bonnet and H. Frankowska, Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework. J. Differ. Equ. 271 (2021) 594–637. [CrossRef] [Google Scholar]
- B. Bonnet and H. Frankowska, Caratheodory Theory and A Priori Estimates for Continuity Inclusions in the Space of Probability Measures, May 2023. Preprint (arXiv:2302.00963). [Google Scholar]
- G. Cavagnari, A. Marigonda and B. Piccoli, Superposition Principle for Differential Inclusions, in Large-Scale Scientific Computing, Vol. 10665, edited by I. Lirkov and S. Margenov. Springer International Publishing, Cham (2018) 201–209. [CrossRef] [Google Scholar]
- P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton—Jacobi Equations, and Optimal Control. Birkhauser, Boston, MA (2004). [CrossRef] [Google Scholar]
- P. Del Moral and M. Doisy, Maslov Idempotent Probability Calculus, I. Theory Probab. Applic. 43 (1999) 562–576. [CrossRef] [Google Scholar]
- V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications. Springer Netherlands, Dordrecht (1997). [Google Scholar]
- P. Cardaliaguet, Notes on Mean Field Games. Available at https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf, 2013. [Google Scholar]
- P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games. Vol. 201 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2019). [Google Scholar]
- R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications II. Vol. 84 of Probability Theory and Stochastic Modelling. Springer International Publishing (2018). [Google Scholar]
- W. Gangbo, T. Nguyen and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space. Methods Applic. Anal. 15 (2008) 155–184. [CrossRef] [Google Scholar]
- I. Ekeland, On the variational principle. J. Math. Anal. Applic. 47 (1974) 324–353. [CrossRef] [Google Scholar]
- W. Gangbo and A. Swiech, Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes. Calc. Var. Part. Differ. Equ. 54 (2015) 1183–1218. [CrossRef] [Google Scholar]
- X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhauser, Boston, MA (1995). [CrossRef] [Google Scholar]
- C. Wu and J. Zhang, Viscosity solutions to parabolic master equations and McKean-Vlasov SDEs with closed-loop controls. Ann. Appl. Probab. 30 (2020) 936–986. [MathSciNet] [Google Scholar]
- J.M. Borwein and Q.J. Zhu, Techniques of Variational Analysis. CMS Books in Mathematics. Springer-Verlag, New York (2005). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.