Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 57 | |
Number of page(s) | 32 | |
DOI | https://doi.org/10.1051/cocv/2025044 | |
Published online | 08 July 2025 |
- K. Bourtzis, Wolbachia-based technologies for insect pest population Control, In Transgenesis and the Management of Vector-borne Disease. Springer (2008) 104-113. [Google Scholar]
- T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner et al., The wmel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476 (2011) 450. [Google Scholar]
- T. Ant, C. Herd, V. Geoghegan, A. Hoffmann and S.S.P., The Wolbachia strain wau provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathogens 14 (2018) e1006815. [Google Scholar]
- S. Sinkins, Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem. Mol. Biol. 34 (2004) 723-729. [Google Scholar]
- J. Kamtchum-Tatuene, B.L. Makepeace, L. Benjamin, M. Baylis and T. Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr. Opin. Infect. Dis. 30 (2017) 108-116. [CrossRef] [PubMed] [Google Scholar]
- A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476 (2011) 454. [Google Scholar]
- S.L. O'Neill, P.A. F, A.P. Turley, G. Wilson, K. Retzki, I. Iturbe-Ormaetxe, Y. Dong, N. Kenny, C.J. Paton, S.A. Ritchie, J. Brown-Kenyon, D. Stanford, N. Wittmeier, N.P. Jewell, S.K. Tanamas, K.L. Anders and C.P. Simmons, Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res. 2 (2018) 36. [Google Scholar]
- WMP, World mosquito program. https://www.worldmosquitoprogram.org, Accessed 22 May 2024. [Google Scholar]
- Y. Li and X. Liu, A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population. J. Theor. Biol. 448 (2018) 53-65. [Google Scholar]
- Z. Qu, L. Xue and J.M. Hyman, Modeling the transmission of Wolbachia in mosquitoes for controlling mosquito- borne diseases. SIAM J. Appl. Math. 78 (2018) 826-852. [Google Scholar]
- L. Almeida, J. Bellver-Arnau, Y. Privat and C. Rebelo, Vector-borne disease outbreak control via instant vector releases. J. Math. Biol. 89 (2024). [Google Scholar]
- S.T. Ogunlade, M.T. Meehan, A.I. Adekunle and E.S. McBryde, A systematic review of mathematical models of dengue transmission and vector control: 2010-2020. Viruses 15 (2023). [Google Scholar]
- K. Agbobidi, L. Almeida and J.-M. Coron, Global stabilization of a sterile insect technique model by feedback laws. J. Optim. Theory Appl. 204 (2025) 30. [Google Scholar]
- P.-A. Bliman, A feedback control perspective on biological control of dengue vectors by Wolbachia infection. Eur. J. Control 59 (2021) 188-206. [Google Scholar]
- A. Cristofaro and L. Rossi, Backstepping control for the sterile mosquitoes technique: stabilization of extinction equilibrium. arXiv:2406.16719 (2024). [Google Scholar]
- D.E. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado and M. Svinin, Optimal control approach for establishing wmelpop Wolbachia infection among wild Aedes aegypti populations. J. Math. Biol. 76 (2018) 1907-1950. [Google Scholar]
- L. Almeida, Y. Privat, M. Strugarek and N. Vauchelet, Optimal releases for population replacement strategies: application to Wolbachia. SIAM J. Math. Anal. 51 (2019) 3170-3194. [Google Scholar]
- L. Almeida, M. Duprez, Y. Privat and N. Vauchelet, Mosquito population control strategies for fighting against arboviruses. Math. Biosci. Eng. 16 (2019) 6274. [Google Scholar]
- L. Almeida, J. Bellver-Arnau and Y. Privat, Optimal control strategies for bistable ODE equations: application to mosquito population replacement. Appl. Math. Optim. 87 (2023) 44. [CrossRef] [MathSciNet] [Google Scholar]
- L. Almeida, A. Haddon, C. Kermorvant, A. Leculier, Y. Privat, M. Strugarek, N. Vauchelet and J.P. Zubelli, Optimal release of mosquitoes to control dengue transmission, in CEMRACS 2018—Numerical and Mathematical Modeling for Biological and Medical Applications: Deterministic, Probabilistic and Statistical Descriptions. Vol. 67 of ESAIM Proc. Surveys. EDP Science, Les Ulis (2020) 16-29. [Google Scholar]
- M. Duprez, R. Helie, Y. Privat and N. Vauchelet, Optimization of spatial control strategies for population replacement, application to Wolbachia. ESAIM Control Optim. Calc. Var. 27 (2021) Paper No. 74, 30. [Google Scholar]
- G. Nadin and A.I. Toledo Marrero, On the maximization problem for solutions of reaction-diffusion equations with respect to their initial data. Math. Modell. Natural Phenomena 15 (2020). [Google Scholar]
- I. Mazari, G. Nadin and A.I. Toledo Marrero, Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: two-scale expansions and symmetrisations. Nonlinearity 34 (2021) 7510-7539. [Google Scholar]
- G. Nadin, M. Strugarek and N. Vauchelet, Hindrances to bistable front propagation: application to Wolbachia invasion. J. Math. Biol. 76 (2018) 1489-1533. [Google Scholar]
- J.Z. Farkas and P. Hinow, Structured and unstructured continuous models for Wolbachia infections. Bull. Math. Biol. 72 (2010) 2067-2088. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- A. Fenton, K.N. Johnson, J.C. Brownlie and G.D. Hurst, Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy. Am. Naturalist 178 (2011) 333-342. [CrossRef] [PubMed] [Google Scholar]
- H. Hughes and N.F. Britton, Modelling the use of Wolbachia to control dengue fever transmission. Bull. Math. Biol. 75 (2013) 796-818. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- D. Vicencio, O. Vasilieva and P. Gajardo, Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations. Math. Biosci. Eng. 20 (2023) 1148-1175. [Google Scholar]
- M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2-by-2 reaction-diffusion systems of Lotka-Volterra type. SIAM J. Appl. Math. 76 (2016) 2060-2080. [Google Scholar]
- E.A. Mordecai, J.M. Caldwell, M.K. Grossman, C.A. Lippi, L.R. Johnson, M. Neira, J.R. Rohr, S.J. Ryan, V. Savage, M.S. Shocket, R. Sippy, A.M. Stewart Ibarra, M.B. Thomas and O. Villena, Thermal biology of mosquito-borne disease. Ecol. Lett. 22 (2019) 1690-1708. [Google Scholar]
- E. Trelat, Contrôle optimal: théorie et applications. Collection Mathematiques Concretes. Vuibert, Paris (2005). [Google Scholar]
- E.H. Lieb and M. Loss, Analysis. Vol. 14 of Grad. Stud. Math., 2nd edn. American Mathematical Society (AMS), Providence, RI (2001). [Google Scholar]
- F. Marini, B. Caputo, M. Pombi, M. Travaglio, F. Montarsi, A. Drago, R. Rosa, M. Manica and A. Della Torre, Estimating spatio-temporal dynamics of Aedes Albopictus dispersal to guide control interventions in case of exotic arboviruses in temperate regions. Sci. Rep. 9 (2019) 10281. [Google Scholar]
- L. Beal, D. Hill, R. Martin and J. Hedengren, Gekko optimization suite. Processes 6 (2018) 106. [Google Scholar]
- J.-M. Rakotoson, Rearrangement relatif. Un instrument d'estimations dans les problemes aux limites. Vol. 64 of Math. Appl. (Berl.). Springer, Berlin (2008). [Google Scholar]
- W. Rudin, Principles of mathematical analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill Book Co., New York-Auckland-Dusseldorf, (1976). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.