Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 37 | |
DOI | https://doi.org/10.1051/cocv/2024075 | |
Published online | 06 January 2025 |
- T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out. Academic Press (2004). [Google Scholar]
- J.E. Kennedy, High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 5 (2005) 321–327. [CrossRef] [PubMed] [Google Scholar]
- G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, in Handbook of Numerical Analysis, Vol. 22. Elsevier (2021) 1–132. [Google Scholar]
- A. Manzoni, A. Quarteroni and S. Salsa, Optimal Control of Partial Differential Equations. Springer (2021). [CrossRef] [Google Scholar]
- C. Clason, K. Kunisch and P. Trautmann, Optimal control of the principal coefficient in a scalar wave equation. Appl. Math. Optim. 84 (2021) 2889–2921. [CrossRef] [MathSciNet] [Google Scholar]
- H. Garcke, S. Mitra and V. Nikolić, A phase-field approach to shape and topology optimization of acoustic waves in dissipative media. SIAM J. Control Optim. 60 (2022) 2297–2319. [CrossRef] [MathSciNet] [Google Scholar]
- Q.D. Tran, G.-W. Jang, H.-S. Kwon and W.-H. Cho, Shape and topology optimization of acoustic lens system using phase field method. Struct. Multidiscipl. Optim. 56 (2017) 713–729. [CrossRef] [Google Scholar]
- X. Hu, Z. Li, R. Bao, W. Chen and H. Wang, An adaptive method of moving asymptotes for topology optimization based on the trust region. Comput. Methods Appl. Mech. Eng. 393 (2022) 114202. [CrossRef] [Google Scholar]
- P. Manns and A. Schiemann, On integer optimal control with total variation regularization on multi-dimensional domains. SIAM J. Control Optim. 61 (2023) 3415–3441. [CrossRef] [MathSciNet] [Google Scholar]
- X.Y. Yan, Y. Liang and G.D. Cheng, Discrete variable topology optimization for simplified convective heat transfer via sequential approximate integer programming with trust-region. Int. J. Numer. Methods Eng. 122 (2021) 5844–5872. [CrossRef] [Google Scholar]
- S. Leyffer and P. Manns, Sequential linear integer programming for integer optimal control with total variation regularization. ESAIM: Control Optim. Calc. Var. 28 (2022) 66. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50 (2012) 1162–1180. [CrossRef] [MathSciNet] [Google Scholar]
- C. Caillaud and A. Chambolle, Error estimates for finite differences approximations of the total variation. IMA J. Numer. Anal. (2022) 692–736. [Google Scholar]
- A. Chambolle and T. Pock, Approximating the total variation with finite differences or finite elements, in Handbook of Numerical Analysis, Vol. 22. Elsevier (2021) 383–417. [Google Scholar]
- S. Amstutz, C. Dapogny and A. Ferrer, A consistent approximation of the total perimeter functional for topology optimization algorithms. ESAIM: Control Optim. Calc. Var. 28 (2022) 1–71. [Google Scholar]
- S. Amstutz and N. Van Goethem, Topology optimization methods with gradient-free perimeter approximation. Interfaces Free Bound. 14 (2012) 401–430. [CrossRef] [MathSciNet] [Google Scholar]
- F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Vol. 135. Cambridge University Press (2012). [CrossRef] [Google Scholar]
- M. Burger, Y. Dong and M. Hintermüller, Exact relaxation for classes of minimization problems with binary constraints, arXiv preprint arXiv:1210.7507 (2012). [Google Scholar]
- J. Marko and G. Wachsmuth, Integer optimal control problems with total variation regularization: optimality conditions and fast solution of subproblems. ESAIM: Control Optim. Calc. Var. 29 (2023) 81. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Schiemann and P. Manns, Discretization of total variation in optimization with integrality constraints. SIAM J. Numer. Anal. (2024) accepted/to appear. [Google Scholar]
- L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
- I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinb. A Math. 111 (1989) 89–102. [CrossRef] [Google Scholar]
- L. Modica and S. Mortola, Un esempio di Γ-convergenca. Bull. Un. Mat. Ital. (1977) 285–299. [Google Scholar]
- K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. [Google Scholar]
- C.G. Simader, On Dirichlet’s Boundary Value Problem: Lp-Theory Based on a Generalization of Garding’s Inequality. Vol. 268 of Lecture Notes in Mathematics. Springer (1972). [Google Scholar]
- C. Meyer and A. Schiemann, Dual regularization and outer approximation of optimal control problems in BV, submitted (2024). [Google Scholar]
- E. Casas and K. Kunisch, Analysis of optimal control problems of semilinear elliptic equations by BV-functions. Set-Valued Var. Anal. 27 (2019) 355–379. [CrossRef] [MathSciNet] [Google Scholar]
- K. Bredies, J.A. Iglesias and D. Walter, On extremal points for some vectorial total variation seminorms, arXiv preprint arXiv:2404.12831 (2024) 1–15. [Google Scholar]
- M.S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 1–15. [Google Scholar]
- M.W. Scroggs, I.A. Baratta, C.N. Richardson and G.N. Wells, Basix: a runtime finite element basis evaluation library. J. Open Source Softw. 7 (2022) 3982. [CrossRef] [Google Scholar]
- M.W. Scroggs, J.S. Dokken, C.N. Richardson and G.N. Wells, Construction of arbitrary order finite element degree- of-freedom maps on polygonal and polyhedral cell meshes. ACM Trans. Math. Softw. 48 (2022) 18:1–18:23. [CrossRef] [Google Scholar]
- A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, V. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman and A. Scopatz, Sympy: symbolic computing in python. PeerJ Comput. Sci. 3 (2017) e103. [CrossRef] [Google Scholar]
- P.M. Pardalos and S.A. Vavasis, Quadratic programming with one negative eigenvalue is np-hard. J. Global Optim. 1 (1991) 15–22. [CrossRef] [MathSciNet] [Google Scholar]
- Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2023). [Google Scholar]
- R. Dautray and J.-L. Lions, Evolution problems I, volume 5 of mathematical analysis and numerical methods for science and technology, 1992. [Google Scholar]
- L.C. Evans, Partial Differential Equations, Vol. 2. Graduate Studies in Mathematics. AMS (2010). [Google Scholar]
- L. Bociu, P. Manns, M. Severitt and S. Strikwerda, Input regularization for integer optimal control in BV with applications to control of poroelastic and poroviscoelastic systems. JNSAO 5 (2024) 1–38. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.