Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 36 | |
Number of page(s) | 49 | |
DOI | https://doi.org/10.1051/cocv/2025026 | |
Published online | 04 April 2025 |
- O.J. Staffans, Well-Posed Linear Systems. Volume 103 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, UK (2005). [Google Scholar]
- Y.L. Šmuljan, Invariant subspaces of semigroups and the Lax-Phillips scheme. Deposited in VINITI, (8009-B86) (1986). [Google Scholar]
- D. Salamon, Infinite dimensional systems with unbounded control and observation: a functional analytic approach. Trans. Am. Math. Soc. 300 (1987) 383–431. [Google Scholar]
- M.R. Opmeer and O.J. Staffans, Optimal control on the doubly infinite continuous time axis and coprime factorizations. SIAM J. Control Optim. 52 (2007) 1958–2007. [Google Scholar]
- M.R. Opmeer and O.J. Staffans, Optimal control on the doubly infinite time axis for well-posed linear systems. SIAM J. Control Optim. 57 (2019) 1985–2015. [Google Scholar]
- R. Curtain and A. Pritchard, The infinite-dimensional Riccati equation for systems defined by evolution operators. SIAM J. Control Optim. 14 (1976) 951–983. [Google Scholar]
- I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory. Springer Heidelberg (1991). [Google Scholar]
- A. Bensoussan, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems. Vol. 1. Birkhäuser Boston (2007). [Google Scholar]
- I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations. Vol. 1 of Abstract Parabolic Systems: Continuous and Approximation Theories. Cambridge University Press (2000). [Google Scholar]
- I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations. Vol. 2 of Abstract Hyperbolic-Like Systems Over a Finite Time Horizon: Continuous and Approximation Theories. Cambridge University Press (2000). [Google Scholar]
- X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhauser Boston (2012). [Google Scholar]
- J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer Verlag Berlin Heidelberg (1971). [Google Scholar]
- M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Vol. 23. Springer Dordrecht (2008). [Google Scholar]
- F. Troltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Vol. 112. American Mathematical Society (2010). [Google Scholar]
- A. Schiela, A concise proof for existence and uniqueness of solutions of linear parabolic PDEs in the context of optimal control. Syst. Control Lett. 62 (2013) 895–901. [Google Scholar]
- A. Kroner, K. Kunisch and B. Vexler, Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49 (2011) 830–858. [Google Scholar]
- M. Braack and B. Tews, Linear-quadratic optimal control for the Oseen equations with stabilized finite elements. ESAIM: Control Optim. Calc. Var. 18 (2012) 987–1004. [Google Scholar]
- V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations. ESAIM: Math. Model. Numer. Anal. 50 (2016) 237–261. [Google Scholar]
- F. Philipp, T. Reis and M. Schaller, Infinite-dimensional port-Hamiltonian systems - a system node approach (2023). Submitted, preprint arXiv:2302.05168. [Google Scholar]
- T. Reis and M. Schaller, Port-Hamiltonian formulation of Oseen flows, in Systems Theory and PDEs, edited by F.L. Schwenninger and M. Waurick. Springer Nature Switzerland, Cham (2024) 123–148. [Google Scholar]
- G. Weiss and O.J. Staffans, Maxwell’s equations as a scattering passive linear system. SIAM J. Control Optim. 51 (2013) 3722–3756. [Google Scholar]
- R.A. Adams and J.J. Fournier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
- M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhauser, Basel (2009). [Google Scholar]
- J.L. Lewis, On very weak solutions of certain elliptic systems. Commun. Part. Differ. Equ. 18 (1993) 1515–1537. [Google Scholar]
- K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Vol. 194 of Graduate Texts in Mathematics. Springer, New York (2000). [Google Scholar]
- H. Alt, Linear Functional Analysis, An Application-Oriented Introduction. Universitext. Springer London (2016). [Google Scholar]
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM Philadelphia (1999). [Google Scholar]
- O.J. Staffans and G. Weiss, Transfer functions of regular linear systems. Part III: inversions and duality. Integral Equ. Operator Theory 49 (2004) 517–558. [Google Scholar]
- C. Tretter and C. Wyss, Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations. J. Evol. Equ. 14 (2014) 121–153. [Google Scholar]
- T. Faulwasser, B. Maschke, F. Philipp, M. Schaller and K. Worthmann, Optimal control of port-Hamiltonian descriptor systems with minimal energy supply. SIAM J. Control Optim. 60 (2022) 2132–2158. [Google Scholar]
- M. Schaller, F. Philipp, T. Faulwasser, K. Worthmann and B. Maschke, Control of port-Hamiltonian systems with minimal energy supply. Eur. J. Control 62 (2023) 33–40. [Google Scholar]
- F. Philipp, M. Schaller, T. Faulwasser, B. Maschke and K. Worthmann, Minimizing the energy supply of infinitedimensional linear port-Hamiltonian systems. IFAC-PapersOnLine 54 (2021) 155–160. [Google Scholar]
- B. Farkas, B. Jacob, T. Reis and M. Schmitz, Operator splitting based dynamic iteration for linear infinitedimensional port-Hamiltonian systems (2023). Submitted, preprint arXiv:2302.01195. [Google Scholar]
- T. Kato, Perturbation Theory for Linear Operators, 2nd edn. Springer, Heidelberg (1980). [Google Scholar]
- F. Schwenninger, Input-to-state stability for parabolic boundary control:linear and semilinear systems, in Control Theory of Infinite-Dimensional Systems, edited by J. Kerner, H. Laasri, and D. Mugnolo. Springer International Publishing, Cham (2020) 83–116. [Google Scholar]
- K. Kunisch and B. Vexler, Constrained Dirichlet boundary control in L2 for a class of evolution equations. SIAM J. Control Optim. 46 (2007) 1726–1753. [Google Scholar]
- W. Arendt and A. ter Elst, From forms to semigroups. Spectral Theory Math. Syst. Theory Evol. Equ. Differ. Differ. Equ. 221 (2012) 47–69. [Google Scholar]
- J. Hale, Ordinary Differential Equations, 2nd edn. Robert E. Krieger Publishing Company, Malabar, Florida (1980). [Google Scholar]
- M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015). [Google Scholar]
- S. Mitusch, S. Funke and J. Dokken, Dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake. J. Open Source Softw. 4 (2019) 1292. [Google Scholar]
- M. Kurula and H. Zwart, Linear wave systems on n-D spatial domains. Int. J. Control 88 (2015) 1063–1077. [Google Scholar]
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Vol. 24 of Monographs and Studies in Mathematics. Pitman Advanced Publishing Program, Boston, London, Melbourne (1985). [Google Scholar]
- B. Jacob and H.J. Zwart, Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces. Vol. 223 of Operator Theory: Advances and Applications. Springer Science & Business Media, Basel (2012). [Google Scholar]
- I. Lasiecka and R. Triggiani, L2 (-regularity of the boundary to boundary operator b*l for hyperbolic and Petrowski PDEs. Abstr. Appl. Anal. 2003 (2003) 215691. [Google Scholar]
- J.R.C. Bardos, G. Lebeau, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.