Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 84
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2025072
Published online 08 October 2025
  1. A. Bensoussan, K. Sung, S. Yam and S. Yung, Linear-quadratic mean field games. J. Optim. Theory Appl. 169 (2016) 496-529. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Buckdahn, J. Li and S. Peng, Nonlinear stochastic differential games involving a major player and a large number of collectively acting minor agents. SIAM J. Control Optim. 52 (2014) 451-492. [Google Scholar]
  3. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705-2734. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y. Hu, J. Huang and T. Nie, Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control Optim. 56 (2018) 2835-2877. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.M. Lasry and P.L. Lions. Mean field games. Jpn. J. Math. 2 (2007) 229-260. [Google Scholar]
  6. S. Nguyen, D. Nguyen and G. Yin, A stochastic maximum principle for switching diffusions using conditional mean-fields with applications to control problems. ESAIM Control Optim. Calc. Var. 26 (2020) 1-26. [Google Scholar]
  7. M. Nourian and P.E. Caines, e-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51 (2013) 3302-3331. [Google Scholar]
  8. J. Sun, H. Wang and Z. Wu, Mean-field linear-quadratic stochastic differential games. J. Differ. Equ. 296 (2021) 299-334. [CrossRef] [Google Scholar]
  9. M. Huang, P.E. Caines and R.P. Malhamé, Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Autom. Control 57 (2012) 1736-1751. [Google Scholar]
  10. J. Arabneydi and A. Mahajan, Team-optimal solution of finite number of mean-field coupled LQG subsystems, in 54th IEEE Conference on Decision and Control (2015) 5308-5313. [Google Scholar]
  11. X. Feng, Y. Hu and J. Huang, A unified approach to linear-quadratic-Gaussian mean-field team: homogeneity, heterogeneity and quasi-exchangeability. Ann. Appl. Probab. 33 (2023) 2786-2823. [Google Scholar]
  12. B. Wang and J. Zhang, Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters. SIAM J. Control Optim. 55 (2017) 429-456. [Google Scholar]
  13. R. Salhab, J.L. Ny and Malhamé, Dynamic collective choice: social optima. IEEE Trans. Autom. Control 63 (2018) 3487-3494. [Google Scholar]
  14. G. Nuno and B. Moll, Social optima in economies with heterogeneous agents. Rev. Econ. Dyn. 28 (2018) 150-180. [Google Scholar]
  15. J. Subramanian, R. Seraj and A. Mahajan, Reinforcement learning for mean-field teams, in Workshop on Adaptive and Learning Agents at International Conference on Autonomous Agents and Multi-Agent Systems (2018). [Google Scholar]
  16. M. Huang and S. Nguyen, Linear-quadratic mean field social optimization with a major player. arXiv preprint arXiv:1904.03346 (2019). [Google Scholar]
  17. S. Sanjari and S. Yuksel, Convex symmetric stochastic dynamic teams and their mean-field limit, in Proceedings of the 58th IEEE Annual Conference on Decision and Control, Nice, France (2019) 4662-4667. [Google Scholar]
  18. B. Wang, H. Zhang and J. Zhang, Mean field linear-quadratic control: uniform stabilization and social optimality. Automática 121 (2020) 109088. [Google Scholar]
  19. J. Huang, B. Wang and J. Yong, Social optima in mean field linear-quadratic-Gaussian control with volatility uncertainty. SIAM J. Control Optim. 59 (2021) 825-856. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Barreiro-Gomez, T. Duncan and H. Tembine, Linear-quadratic mean-field-type games: jump-diffusion process with regime switching. IEEE Trans. Autom. Control 64 (2019) 4329-4336. [Google Scholar]
  21. Y. Chen, A. Busic and S. Meyn, State estimation for the individual and the population in mean field control with application to demand dispatch. IEEE Trans. Autom. Control 62 (2016) 1138-1149. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Piccoli, F. Rossi and E. Trélat, Control to flocking of the Kinetic Cucker-Smale model. SIAM J. Math. Anal. 47 (2015) 4685-4719. [CrossRef] [MathSciNet] [Google Scholar]
  23. P.R. de Waal and J.H. van Schuppen, A class of team problems with discrete action spaces: optimality conditions based on multimodularity. SIAM J. Control Optim. 38 (2000) 875-892. [Google Scholar]
  24. S. Peng, Backward SDE and related g-expectation, in Backward stochastic differential equations (Paris, 1995-1996). Pitman Res. Notes Math. Ser. 364. Longman, Harlow (1997) 141-159. [Google Scholar]
  25. J. Yong, A stochastic linear quadratic optimal control problem with generalized expectation. Stoch. Anal. Appl. 26 (2008) 1136-1160. [Google Scholar]
  26. D. Duffie and L. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353-394. [CrossRef] [MathSciNet] [Google Scholar]
  27. N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Cvitanic and J. Ma, Hedging options for a large investor and forward-backward SDE’s. Ann. Appl. Probab. 6 (1996) 370-398. [Google Scholar]
  29. J. Cvitanic, X. Wan and J. Zhang, Optimal contracts in continuous-time models. J. Appl. Math. Stochastic Anal. 2006 (2006) 1-27. [Google Scholar]
  30. J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and Their Applications. Springer Science & Business Media (1999). [Google Scholar]
  31. S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825-843. [CrossRef] [MathSciNet] [Google Scholar]
  32. G. Wang, Z. Wu and J. Xiong, Maximum principles for forward-backward stochastic control systems with correlated state and observation noises. SIAM J. Control Optim. 51 (2013) 491-524. [CrossRef] [MathSciNet] [Google Scholar]
  33. G. Wang, Z. Wu and J. Xiong, A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Tmns. Autorn. Control 60 (2015) 2904-2916. [Google Scholar]
  34. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]
  35. J. Huang, S. Wang and Z. Wu, Backward mean-field linear-quadratic-Gaussian (LQG) games: full and partial information. IEEE Trans. Autorn. Control 61 (2016) 3784-3796. [Google Scholar]
  36. X. Li, J. Sun and J. Xiong, Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl. Math. Optim. 80 (2019) 223-250. [CrossRef] [MathSciNet] [Google Scholar]
  37. A.E. Lim and X.Y. Zhou, Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40 (2001) 450-474. [CrossRef] [MathSciNet] [Google Scholar]
  38. S. Peng, Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27 (1993) 125-144. [CrossRef] [MathSciNet] [Google Scholar]
  39. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equation in Control and Systems Theory. Birkhäuser, Basel, Switzerland (2003). [Google Scholar]
  40. J. Yong, Linear forward-backward stochastic differential equations with random coefficients. Probab. Theory Relat. Fields 135 (2006) 53-83. [CrossRef] [Google Scholar]
  41. J.C. Engwerda, LQ Dynamic Optimization and Differential Games. Chichester, Wiley (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.