Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 66
Number of page(s) 40
DOI https://doi.org/10.1051/cocv/2025054
Published online 05 August 2025
  1. J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26 (1977) 347–374. [Google Scholar]
  2. S. Adly and T. Haddad, An implicit sweeping process approach to quasistatic evolution variational inequalities. SIAM J. Math. Anal. 50 (2018) 761–778. [Google Scholar]
  3. S. Adly, F. Nacry and L. Thibault, Discontinuous sweeping process with prox-regular sets. ESAIM: Control Optim. Calc. Var. 23 (2017) 1293–1329. [Google Scholar]
  4. S. Adly and M. Sofonea, Time-dependent inclusions and sweeping processes in contact mechanics. J. Appl. Math. Phys. 70 (2019) Art. 39, 19. [Google Scholar]
  5. B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness, and stability. SIAM Rev. 62 (2020) 3129. [Google Scholar]
  6. A. Jourani and E. Vilches, Positively α-far sets and existence results for generalized perturbed sweeping Processes. J. Convex Anal. 23 (2016) 775–821. [Google Scholar]
  7. S. Migórski, M. Sofonea and S.D. Zeng, Well-posedness of history-dependent sweeping processes. SIAM J. Math. Anal. 51 (2019) 1082–1107. [Google Scholar]
  8. F. Nacry and L. Thibault, BV prox-regular sweeping process with bounded truncated variation. Optimization 69 (2020) 1391–1437. [Google Scholar]
  9. S. Adly, T. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities. Math. Program. (2014) 5–47. [Google Scholar]
  10. D. Azzam-Laouir, C. Castaing and M.D.P. Monteiro Maarques, BV right continuous solutions of differential inclusions involving time dependent maximal monotone operators. arXiv:2103.01113v1 (2021) 1–43. [Google Scholar]
  11. C. Castaing and M.D.P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets with bounded variation. Port. Math. 53 (1996) 73–87. [Google Scholar]
  12. C. Castaing and L. Thibault, Various perturbations and relaxations of the sweeping process. J. Convex Anal. 30 (2023) 659–742. [Google Scholar]
  13. J.F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Differ. Equ. 226 (2006) 135–179. [Google Scholar]
  14. M. Kamenskii, O. Makarenkov and L.N. Wadippuli, A continuation principle for periodic BV-continuous sweeping processes. SIAM J. Math. Anal. 52 (2020) 5598–5626. [Google Scholar]
  15. M.D.P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhäuser, Basel (1993). [Google Scholar]
  16. F. Nacry, Perturbed BV sweeping process involving prox-regular sets. J. Nonlinear Convex Anal. 18 (2017) 1619–1651. [Google Scholar]
  17. V. Recupero, Convex valued geodesics and applications to sweeping processes with bounded retraction. J. Convex Anal. 27 (2020) 535–556. [Google Scholar]
  18. A. Tolstonogov, Compactness of BV solutions of a convex sweeping process of measurable differential inclusion. J. Convex Anal. 27 (2020) 673–695. [Google Scholar]
  19. A. Bouach, T. Haddad and L. Thibault, Nonconvex integro-differential sweeping process with Applications. SIAM J. Control Optim. 60 (2022) 229–238. [Google Scholar]
  20. A. Bouach, T. Haddad and L. Thibault, On the discretization of truncated integro-differential sweeping process and optimal control. J. Optim. Theory Appl. 193 (2022) 785–830. [Google Scholar]
  21. F.W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory. SIAM J. Control Optim. 55 (2017) 2437–2459. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Colombo and C. Kozaily, Existence and uniqueness of solutions for an integral perturbation of Moreau’s sweeping process. J. Convex Anal. 27 (2020) 227–236. [Google Scholar]
  23. S. Gaouir, T. Haddad and L. Thibault, Prox-regular integro differential sweeping process. J. Optim. Theory Appl. 203 (2024) 1413–1438. [Google Scholar]
  24. L. Thibault, Unilateral Variational Analysis in Banach Spaces. Part I. General Theory. World Scientific, London–New Jersey–Singapore (2023). [Google Scholar]
  25. R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231–5249. [Google Scholar]
  26. L. Thibault, Unilateral Variational Analysis in Banach Spaces. Part II. Special Classes of Functions and Sets. World Scientific, London–New Jersey–Singapore (2023). [Google Scholar]
  27. N. Dinculeanu, Vector Measures. Pergamon, Oxford (1967). [Google Scholar]
  28. J.J. Moreau and M. Valadier, A chain rule involving vector functions of bounded variation. J. Funct. Anal. 74 (1987) 333–345. [Google Scholar]
  29. M.D.P. Monteiro Marques, Perturbations convexes semi-continues supérieurement de problèmes dévolution dans les espaces de Hilbert, Travaux Sem. Anal. Convexe Montpellier (1984). Exposé 2. [Google Scholar]
  30. E. Vilches, Well-posedness for integro-differential sweeping processes of Volterra type. J. Convex Anal. 31 (2024) 1273–1288. [Google Scholar]
  31. L. Thibault, Moreau sweeping process with bounded truncated retraction. J. Convex Anal. 23 (2016) 1051–1098. [Google Scholar]
  32. J. Diestel and J.J. Uhl, Vector Measures, Mathematical Surveys, vol. 15. American Mathematical Society, Providence, R.I. (1977). [Google Scholar]
  33. Y. Jiang and B. Zhang, High-power fractional-order capacitor with 1 < α < 2 based on power converter. IEEE Trans. Ind. Electron. 65 (2018). [Google Scholar]
  34. M.D. Ortigueira, V. Martynyuk, V. Kosenkov and A.G. Batista, A New Look at the Capacitor Theory. Fractal Fract. (2023). [Google Scholar]
  35. A.G. Radwan, Resonance and quality factor of the RLαCα fractional circuit. IEEE J. Emerg. Select. Top. Circuits Syst. 3 (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.