Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 38 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/cocv/2025024 | |
Published online | 08 April 2025 |
- D. Monderer and L.S. Shapley, Potential games. Games Econ. Behav. 14 (1996) 124–143. [Google Scholar]
- P.J. Graber, Remarks on potential mean field games, Research in the Mathematical Sciences 12 (2025) 13. [CrossRef] [Google Scholar]
- A. Dumas, F. Santambrogio, Optimal trajectories in L1 and under L1 penalizations. Comptes Rendus Math., in press. [Google Scholar]
- P. Cardaliaguet, A.R. Mészáros, F. Santambrogio, First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54 (2016) 2672–2709. [Google Scholar]
- L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans. Arch. Rational Mech. Anal. 194 (2009) 421–462. [Google Scholar]
- F. Santambrogio, Optimal Transport for Applied Mathematicians, in Progress in Nonlinear Differential Equations and Their Applications, Vol. 87. Birkhäuser Basel (2015). [CrossRef] [Google Scholar]
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York (1977). [Google Scholar]
- H. Lavenant and F. Santambrogio, Optimal density evolution with congestion: L bounds via flow interchange techniques and applications to variational mean field games. Commun. Part. Differ. Equ. 43 (2018) 1761–1802. [Google Scholar]
- F. Santambrogio, Lecture notes on variational mean field games, in Mean Field Games - Cetraro, Italy, edited by C. Porretta. Springer, C.I.M.E. Foundation Subseries (2019). [Google Scholar]
- P. Cardaliaguet and P.J. Graber, Mean field games systems of first order. ESAIM: Control Optim. Calc. Var. 21 (2015) 690–722. [Google Scholar]
- A. Dumas, Deterministic Mean Field Games with Jumps, PhD thesis. Univ. Lyon 1, in preparation. [Google Scholar]
- P. Cannarsa and R. Capuani, Existence and uniqueness for mean field games with state constraints, in PDE models for multi-agent phenomena. Vol. 28 of Springer INdAM Series. Springer, Cham (2018) 49–71. [Google Scholar]
- S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Part. Differ. Equ. 28 (2007) 85–120. [Google Scholar]
- C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, AMS (2003). [Google Scholar]
- A. Beck, First-Order Methods in Optimization. Society for Industrial and Applied Mathematics (2017). [Google Scholar]
- J.J. Moreau, Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273–299. [CrossRef] [Google Scholar]
- G.H. Hardy, Note on a theorem of Hilbert. Math. Z. 6 (1920) 314–317. [Google Scholar]
- G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, 2nd edn. Cambridge University Press (1952). [Google Scholar]
- R.L. Hughes, A continuum theory for the flow of pedestrian. Transport. Res. Part B 36 (2002) 507–535. [CrossRef] [Google Scholar]
- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 (2009) 183–202. [Google Scholar]
- J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [Google Scholar]
- J.D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, in Active Particles, Vol. 1 of Theory, Models, Applications, edited by N. Bellomo, P. Degond, E. Tadmor. (2017) 141–171. [Google Scholar]
- P. Cardaliaguet, Notes on mean field games (from P.-L. Lions’ lectures at College de France), available at https://www.ceremade.dauphine.fr/~cardalia/. [Google Scholar]
- M. Huang, R.P. Malhame and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inform. Syst. 6 (2006) 221–252. [Google Scholar]
- J.-M. Lasry and P.-L. Lions, Jeux a champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
- J.-M. Lasry and P.-L. Lions, Jeux a champ moyen. II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
- J.-M. Lasry and P.-L. Lions, Mean-field games. Japan. J. Math 2 (2007) 229–260. [CrossRef] [Google Scholar]
- P.-L. Lions, Series of lectures on mean filed games. College de France, Paris, 2006-2012, video-recorded and available at the web page http://www.college-de-france.fr/site/audio-video/. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.