Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 64
Number of page(s) 65
DOI https://doi.org/10.1051/cocv/2025052
Published online 25 July 2025
  1. M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Vol. 22 of Adv. Des. Control, 2nd edn. SIAM, PA (2011). [Google Scholar]
  2. A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis. Vol. 28 of Tracts in Mathematics. European Mathematical Society, Zurich (2018). [Google Scholar]
  3. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization. Vol. 16 of Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg (1992). [Google Scholar]
  4. K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybernet. 34 (2005) 203–225. [MathSciNet] [Google Scholar]
  5. J.R. Roche and J. Sokolowski, Numerical methods for shape identification problems. Control Cybernet. 25 (1996) 867–895. [Google Scholar]
  6. L. Afraites, A new coupled complex boundary method (CCBM) for an inverse obstacle problem. Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 23–40. [Google Scholar]
  7. I. Akduman and R. Kress, Electrostatic imaging via conformal mapping. Inverse Probl. 18 (2002) 1659–1672. [Google Scholar]
  8. G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse problem with one measurement. Trans. Am. Math. Soc. 347 (1995) 3031–3041. [Google Scholar]
  9. G. Alessandrini and A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34 (1996) 913–921. [Google Scholar]
  10. L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Prob. Imaging 4 (2010) 351–377. [Google Scholar]
  11. R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory. J. Inv. Ill-Posed Probl. 13 (2005) 27–40. [Google Scholar]
  12. F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Probl. 14 (1998) 67–82. [Google Scholar]
  13. V. Isakov, Inverse Problems for Partial Differential Equations, Vol. 127. Springer Business & Media (2066). [Google Scholar]
  14. G.I. Bizhanova and V.A. Solonnikov, On free boundary problems for the second order parabolic equations on free boundary problems for the second order parabolic equations. Algebra Anal. 12 (2000) 98–139. [Google Scholar]
  15. V.A. Solonnikov, Lectures on Evolution Free Boundary Problems: Classical Solutions. Lect. Notes Math. Springer (2003) 123-175. [Google Scholar]
  16. J. Escher and G. Simonett, Classical solutions of multidimensional Hele–Shaw models. SIAM J. Math. Anal. 28 (1997) 1028–1047. [Google Scholar]
  17. P. Cardaliaguet and O. Ley, Some flows in shape optimization. Arch. Rational Mech. Anal. 183 (2007) 21–58. [Google Scholar]
  18. P. Cardaliaguet and E. Rouy, Viscosity solutions of increasing flows of sets. application of the Hele–Shaw problem for power-law fluids. SIAM J. Math. Anal. 38 (2006) 143–165. [Google Scholar]
  19. Y. Giga, Surface Evolution Equations A Level Set Approach. Vol. 99 of Monographs in Mathematics. Birkhäuser, Basel (2006). [Google Scholar]
  20. P.I. Plotnikov and J. Sokołowski, Geometric aspects of shape optimization. J. Geom. Anal. 33 (2023) Article 206. [Google Scholar]
  21. P.I. Plotnikov and J. Sokołowski, Gradient flow for Kohn–Vogelius functional. Siberian Electron. Math. Rep. 20 (2023) 524–579. [Google Scholar]
  22. L. Hörmander, The Analysis of Linear Partial Differential Operators. Springer, New York (1983-1985). [Google Scholar]
  23. V. Šverák, On optimal shape design. J. Math. Pures Appl. 72 (1993) 537–551. [Google Scholar]
  24. A. Henrot, W. Horn and J. Sokołowski, Domain optimization problem for stationary heat equation. Appl. Math. Comp. Sci. 6 (1996) 353–374. [Google Scholar]
  25. D. Bucur and J.-P. Zolésio, n-dimensional shape optimization under the capacitary constraints. J. Differ. Equ. 123 (1995) 504–522. [Google Scholar]
  26. L. Afraites and J.F.T. Rabago, Boundary shape reconstruction with Robin condition: existence result, stability analysis, and inversion via multiple measurements. Comput. Appl. Math. 43 (2024) Article 270. [Google Scholar]
  27. J. Crank, Free and Moving Boundary Problems. Clarendon Press (1984). [Google Scholar]
  28. C.M. Elliot and J.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston (1982). [Google Scholar]
  29. S. Richardson, Hele–Shaw flows with a free boundary produced by the injection of the fluid into a narrow channel. J. Fluid Mech. 56 (1972) 609–618. [Google Scholar]
  30. J.W. Neuberger, Sobolev Gradients and Differential Equations. Vol. 1670 of Lecture Notes in Mathematics, 2nd edn. Springer-Verlag, Berlin, Heidelberg (2010). [Google Scholar]
  31. H. Azegami, Shape Optimization Problems. Springer Optimization and its Applications. Springer, Singapore (2020). [Google Scholar]
  32. G. Dogan, P. Morin, R.H. Nochetto and M. Verani, Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Eng. 196 (2007) 3898–3914. [CrossRef] [Google Scholar]
  33. B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Clarendon Press, Oxford (2001). [Google Scholar]
  34. L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete Contin. Dyn. Syst. B 8 (2007) 389–416. [Google Scholar]
  35. J.F.T. Rabago and H. Azegami, Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement. Japan J. Indust. Appl. Math 36 (2019) 131–176. [Google Scholar]
  36. Y. Sunayama, M. Kimura and J.F.T. Rabago, Comoving mesh method for certain classes of moving boundary problems. Japan J. Ind. Appl. Math. 39 (2022) 973–1001. [Google Scholar]
  37. Y. Sunayama, J.F.T. Rabago and M. Kimura, Comoving mesh method for multi-dimensional moving boundary problems: Mean-curvature flow and Stefan problems. Math. Comput. Simul. 221 (2024) 589–605. [Google Scholar]
  38. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer-Verlag, New York (2019). [Google Scholar]
  39. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  40. J.F.T. Rabago and H. Azegami, A second-order shape optimization algorithm for solving the exterior Bernoulli free boundary problem using a new boundary cost functional. Comput. Optim. Appl. 77 (2020) 251–305. [Google Scholar]
  41. E.V. Frolova, Quasistationary approximation for the Stefan problem. J. Math. Sci. 132 (2006) 562–575. [Google Scholar]
  42. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin, Heidelberg (2001). [Google Scholar]
  43. M. Kimura, Time local existence of a moving boundary of the Hele–Shaw flow with suction. Eur. J. Appl. Math. 10 (1999) 581–605. [Google Scholar]
  44. J.F.T. Rabago, A. Hadri, L. Afraites, A.S. Hendy and M.A. Zaky, A robust alternating direction numerical scheme in a shape optimization setting for solving geometric inverse problems. Comput. Math. Appl. 175 (2024) 19–32. [Google Scholar]
  45. L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Series in Mathematics, 1st edn. AMS (1998). [Google Scholar]
  46. W.W. Hager, Updating the inverse of a matrix. SIAM Rev. 31 (1999) 221–239. [Google Scholar]
  47. J. Sherman and W.J. Morrison, Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann. Math. Stat. 20 (1949). [Google Scholar]
  48. M.A. Woodbury, The Stability of Out-Input Matrices. Chicago, III (1949) 5. [Google Scholar]
  49. O.A. Ladyženskaja and N.N. Ural’ceva, Equations aux Dérivées Partielles de Type Elliptique. Dunod, Paris (1968). [Google Scholar]
  50. C. Miranda, Partial Differential Equations of Elliptic Type. Ergebnisse der Mathematik und ihrer Grenzgebiete 2, 2nd edn. Springer-Verlag, Berlin, Heidelberg (1970). [Google Scholar]
  51. O.D. Kellog, On the derivates of harmonic functions on the boundary. Trans. Mat. Soc. 33 (1931) 486–510. [Google Scholar]
  52. J. Schauder, Über lineare elliptische differentialgleichungen zweiter ordnung. Math. Z. 38 (1934) 257–282. [Google Scholar]
  53. R. Fiorenza, Hölder and Locally Hölder Continuous Functions, and Open Sets of Class Ck, Ck,λ. Birkhaüser (2017). [Google Scholar]
  54. G. Nardi, Schauder estimate for solutions of Poisson’s equation with Neumann boundary condition. L’Enseign. Math. 60 (2014) 421–435. [Google Scholar]
  55. B.K. Driver, Analysis with Applications. Part 2. Springer (2003). [Google Scholar]
  56. G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). [Google Scholar]
  57. B.K. Driver, Analysis with Applications. Part 1. Springer (2003). [Google Scholar]
  58. S.N. Antontsev, C.R. Goncalves and A.M. Meirmanov, Exact estimates for the classical solutions to the free boundary problem in the Hele-Shaw cell. Adv. Diff. Equ. 8 (2003) 1259–1280. [Google Scholar]
  59. B. Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele–Shaw flows. SIAM J. Math. Anal. 16 (1985) 279–300. [Google Scholar]
  60. M.R. Ebert and M. Reissig, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models. Birkhäuser, Cham (2018). [Google Scholar]
  61. A. Friedman, Variational Principles and Free Boundary Problems. Wiley-Interscience, New York (1982). [Google Scholar]
  62. D. Kinderlehrer, Variational inequalities and free boundary problems. Bull. Am. Math. Soc. 84 (1978) 7–26. [Google Scholar]
  63. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). [Google Scholar]
  64. P. Hartman, Ordinary Differential Equations, 2nd edn. SIAM (2002). [Google Scholar]
  65. S.N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence. Probability and Statistics. Wiley (2005). [Google Scholar]
  66. N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Vol. 12 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 1997. [Google Scholar]
  67. V. Volpert, Elliptic Partial Differential Equations, Vol. 2: Reaction-Diffusion Equations. Birkhäuser (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.