Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 51 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/cocv/2025037 | |
Published online | 30 June 2025 |
- M. Gerdts, Solving mixed-integer optimal control problems by branch & bound: a case study from automobile test-driving with gear shift. Optimal Control Appl. Methods 26 (2005) 1–18. doi: https://doi.org/10.1002/oca.751. [CrossRef] [MathSciNet] [Google Scholar]
- C. Kirches, S. Sager, H. Bock and J. Schlöder, Time-optimal control of automobile test drives with gear shifts. Optimal Control Appl. Methods 31 (2010) 137–153. doi: https://doi.org/10.1002/oca.892. [CrossRef] [MathSciNet] [Google Scholar]
- S. Göttlich, A. Potschka and C. Teuber, A partial outer convexification approach to control transmission lines. Computat. Optim. Appl. 72 (2018) 431–456. doi: https://doi.org/10.1007/s10589-018-0047-6. [Google Scholar]
- Q. Zhang, S. Li and J. Guo, Mixed integer optimal control in minimum time multi-points traversal problem of robotic manipulators! IFAC Proc. Vol. 47 (2014) 7898–7903. doi: https://doi.org/10.3182/20140824-6-ZA-1003.00931. [CrossRef] [Google Scholar]
- O. Habeck, M.E. Pfetsch and S. Ulbrich, Global optimization of mixed-integer ode constrained network problems using the example of stationary gas transport. SIAM J. Optim. 29 (2019) 2949–2985. doi: https://doi.org/10.1137/17M1152668. [CrossRef] [MathSciNet] [Google Scholar]
- F. Ruffler and F.M. Hante, Optimal switching for hybrid semilinear evolutions. Nonlinear Anal. Hybrid Syst. 22 (2016) 215–227. doi: https://doi.org/10.1016/j.nahs.2016.05.001. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gottlich, A. Potschka and U. Ziegler, Partial outer convexification for traffic light optimization in road networks. SIAM J. Sci. Comput. 39 (2017) 23. doi: https://doi.org/10.1137/15M1048197. [Google Scholar]
- S. Gottlich, O. Kolb and S. Kuhn, Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Netw. Heterog. Media 9 (2014) 315–334. doi: https://doi.org/10.3934/nhm.2014.9.315. [CrossRef] [MathSciNet] [Google Scholar]
- A. Burger, C. Zeile, A. Altmann-Dieses, S. Sager and M. Diehl, An algorithm for mixed-integer optimal control of solar thermal climate systems with mpc-capable runtime, in 2018 European Control Conference (ECC). IEEE (2018). doi: https://doi.org/10.23919/ecc.2018.8550424. [Google Scholar]
- V.M. Zavala, Ji. Wang, S. Leyffer, E.M. Constantinescu, M. Anitescu and G. Conzelmann, Proactive energy management for next-generation building, in Proceedings of SimBuild Conference 2010: 4th Conference of IBPSA-USA. Vol. 4 of SimBuild Conference, New York City, USA (2010) 377–385. [Google Scholar]
- S. Sager, M. Jung and C. Kirches, Combinatorial integral approximation. Math. Methods Oper. Res. 73 (2011) 363–380. doi: https://doi.org/10.1007/s00186-011-0355-4. [CrossRef] [MathSciNet] [Google Scholar]
- C. Zeile, T. Weber and S. Sager, Combinatorial integral approximation decompositions for mixed-integer optimal control. Algorithms 15 (2022). doi: https://doi.org/10.3390/a15040121. [CrossRef] [Google Scholar]
- A. Buörger, Nonlinear mixed-integer model predictive control of renewable energy systems: methods, software, and experiments. (2021). doi: https://doi.org/10.6094/UNIFR/175441. [Google Scholar]
- S. Sager, H.G. Bock and M. Diehl, The integer approximation error in mixed-integer optimal control. Math. Program. 133 (2010) 1–23. doi: https://doi.org/10.1007/s10107-010-0405-3. [Google Scholar]
- P. Manns and A. Schiemann, On integer optimal control with total variation regularization on multidimensional domains. SIAM J. Control Optim. 61 (2023) 3415–3441. doi: https://doi.org/10.1137/22M152116X. [CrossRef] [MathSciNet] [Google Scholar]
- P. Manns and M. Severitt, On discrete subproblems in integer optimal control with total variation regularization in two dimensions. (2024). https://doi.org/10.48550/ARXIV.2403.09213. [Google Scholar]
- F. Bestehorn, C. Hansknecht, C. Kirches and P. Manns, Mixed-integer optimal control problems with switching costs: a shortest path approach. Math. Program. 188 (2020) 621–652. doi: https://doi.org/10.1007/s10107-020-01581-3. [Google Scholar]
- S. Sager and C. Zeile, On mixed-integer optimal control with constrained total variation of the integer control. Computat. Optim. Appl. 78 (2021) 575–623. doi: https://doi.org/10.1007/s10589-020-00244-5. [CrossRef] [Google Scholar]
- S. Sager, M. Tetschke and C. Zeile, A numerical study of transformed mixed-integer optimal control problems. Math. Program. Computat. (2024) 1–37. doi: https://doi.org/10.1007/s12532-024-00263-x. [Google Scholar]
- C. Buchheim, A. GrUtering and C. Meyer, Parabolic optimal control problems with combinatorial switching Constraints. Part I. Convex relaxations. SIAM J. Optim. 34 (2024) 1187–1205. doi: https://doi.org/10.1137/22m1490260. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hahn, C. Kirches, P. Manns, S. Sager and C. Zeile, Decomposition and Approximation for PDE- Constrained Mixed-Integer Optimal Control. Springer International Publishing (2021) 283–305. doi: https://doi.org/10.1007/978-3-030-79393-7_11. [Google Scholar]
- C. Buchheim, A. GrUtering and C. Meyer, Parabolic optimal control problems with combinatorial switching Constraints. Part II. Outer approximation algorithm. SIAM J. Optim. 34 (2024) 1295–1315. doi: https://doi.org/10.1137/22m1490284. [CrossRef] [MathSciNet] [Google Scholar]
- S. Leyffer and P. Manns, Sequential linear integer programming for integer optimal control with total variation regularization. ESAIM Control Optim. Calc. Var. 28 (2022). https://doi.org/10.1051/cocv/2022059. [Google Scholar]
- J. Marko and G. Wachsmuth, Integer optimal control problems with total variation regularization: Optimality conditions and fast solution of subproblems. ESAIM Control Optim,. Calc. Var. 29 (2023). https://doi.org/10.1051/cocv/2023065. [Google Scholar]
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications. Clarendon Press, Oxford (2000). ISBN 9780198502456. [Google Scholar]
- J. Marko and G. Wachsmuth, Mixed-integer optimal-control - algorithm & tools: v1.0.0 - initial release (2025). doi: https://doi.org/10.5281/zenodo.15025947. [Google Scholar]
- S. Sager, A Benchmark Library of Mixed-integer Optimal Control Problems. Springer (2012) 631–670. doi: https://doi.org/10.1007/978-1-4614-1927-3_22. [Google Scholar]
- R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equ. 247 (2009) 1354–1396. doi: https://doi.org/10.1016/j.jde.2009.06.001. [Google Scholar]
- R. Chill, H. Meinlschmidt and J. Rehberg, On the numerical range of second-order elliptic operators with mixed boundary conditions in 1p. J. Evol. Equ. 21 (2020) 3267–3288. doi: https://doi.org/10.1007/s00028-020-00642-6. [Google Scholar]
- G. Dore, Lp Regularity for Abstract Differential Equations. Springer Berlin Heidelberg (1993) 25–38. doi: https://doi.org/10.1007/bfb0085472. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.