Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 75
Number of page(s) 81
DOI https://doi.org/10.1051/cocv/2025061
Published online 29 August 2025
  1. M.P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications. Springer Science & Business Media (2013). [Google Scholar]
  2. O. Sigmund and K. Maute, Topology optimization approaches. Struct. Multidiscipl. Optim. 48 (2013) 1031–1055. [Google Scholar]
  3. S. Adriaenssens, P. Block, D. Veenendaal and C. Williams, Shell Structures for Architecture: Form Finding and Optimization. Routledge (2014). [Google Scholar]
  4. L.L. Beghini, A. Beghini, N. Katz, W.F. Baker and G.H. Paulino, Connecting architecture and engineering through structural topology optimization. Eng. Struct. 59 (2014) 716–726. [Google Scholar]
  5. J. Alexandersen, A detailed introduction to density-based topology optimisation of fluid flow problems with implementation in matlab. Struct. Multidiscipl. Optim. 66 (2023) 12. [Google Scholar]
  6. T. Borrvall and J. Petersson, Topology optimization of fluids in stokes flow. Int. J. Numer. Methods Fluids 41 (2003) 77–107. [CrossRef] [Google Scholar]
  7. P. Gangl, Sensitivity-based Topology and Shape Optimization with Application to Electrical Machines, PhD thesis. Johannes Kepler University Linz (2016). [Google Scholar]
  8. J.S. Jensen and O. Sigmund, Topology optimization for nano-photonics. Laser Photon. Rev. 5 (2011) 308–321. [CrossRef] [Google Scholar]
  9. N. Lebbe, C. Dapogny, E. Oudet, K. Hassan and A. Gliere, Robust shape and topology optimization of nanophotonic devices using the level set method. J. Computat. Phys. 395 (2019) 710–746. [Google Scholar]
  10. F. Nishanth and B. Wang, Topology optimization of electric machines: a review, in 2022 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE (2022) 1–8. [Google Scholar]
  11. R. Huiskes and R. Boeklagen, Mathematical shape optimization of hip prosthesis design. J. Biomech. 22 (1989) 793–804. [Google Scholar]
  12. A. Quarteroni and G. Rozza, Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math. Models Methods Appl. Sci. 13 (2003) 1801–1823. [Google Scholar]
  13. Z.-C. Zhong, S.-H. Wei, J.-P. Wang, C.-K. Feng, C.-S. Chen and C.-H. Yu, Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med. Eng. Phys. 28 (2006) 90–98. [Google Scholar]
  14. C.B. Macdonald and S.J. Ruuth, Level set equations on surfaces via the closest point method. J. Sci. Comput. 35 (2008) 219–240. [Google Scholar]
  15. L.-T. Cheng, P. Burchard, B. Merriman and S. Osher, Motion of curves constrained on surfaces using a level-set approach. J. Computat. Phys. 175 (2002) 604–644. [Google Scholar]
  16. Q. Pan, X. Zhai and F. Chen, Density-based isogeometric topology optimization of shell structures. Comput.-Aided Des. 176 (2024) 103773. [Google Scholar]
  17. E.A. Träff, O. Sigmund and N. Aage, Topology optimization of ultra high resolution shell structures. Thin-Walled Struct. 160 (2021) 107349. [Google Scholar]
  18. S. Townsend and H.A. Kim, A level set topology optimization method for the buckling of shell structures. Struct. Multidiscipl. Optim. 60 (2019) 1783–1800. [Google Scholar]
  19. T. Ho-Nguyen-Tan and H.-G. Kim, An efficient method for shape and topology optimization of shell structures. Struct. Multidiscipl. Optim. 65 (2022) 119. [Google Scholar]
  20. Q. Ye, Y. Guo, S. Chen, N. Lei and X.D. Gu, Topology optimization of conformal structures on manifolds using extended level set methods (x-lsm) and conformal geometry theory. Comput. Methods Appl. Mech. Eng. 344 (2019) 164–185. [Google Scholar]
  21. M. Calabrese, T. Primo and A. Del Prete, Optimization of machining fixture for aeronautical thin-walled components. Procedia CIRP 60 (2017) 32–37. [CrossRef] [Google Scholar]
  22. J. Ma, M.Y. Wang and X. Zhu, Compliant fixture layout design using topology optimization method, in 2011 IEEE International Conference on Robotics and Automation. IEEE (2011) 3757–3763. [Google Scholar]
  23. Q. Xia and T. Shi, Topology optimization of compliant mechanism and its support through a level set method. Comput. Methods Appl. Mech. Eng. 305 (2016) 359–375. [Google Scholar]
  24. Q. Xia, M.Y. Wang and T. Shi, A level set method for shape and topology optimization of both structure and support of continuum structures. Comput. Methods Appl. Mech. Eng. 272 (2014) 340–353. [Google Scholar]
  25. W. Zhang, L. Zhao and S. Cai, Shape optimization of dirichlet boundaries based on weighted b-spline finite cell method and level-set function. Comput. Methods Appl. Mech. Eng. 294 (2015) 359–383. [Google Scholar]
  26. J. Desai, A. Faure, G. Michailidis, G. Parry and R. Estevez, Topology optimization in acoustics and elasto-acoustics via a level-set method. J. Sound Vibr. 420 (2018) 73–103. [Google Scholar]
  27. P.D. Dunning and H.A. Kim, Introducing the sequential linear programming level-set method for topology optimization. Struct. Multidiscipl. Optim. 51 (2015) 631–643. [Google Scholar]
  28. F. Feppon, G. Allaire and C. Dapogny, Null space gradient flows for constrained optimization with applications to shape optimization. ESAIM: Control Optim. Calc. Var. 26 (2020) 90. [Google Scholar]
  29. K. Svanberg, The method of moving asymptotes – a new method for structural optimization. Int. J. Numer. Methods Eng. 24 (1987) 359–373. [CrossRef] [Google Scholar]
  30. G. Allaire and C. Dapogny, A linearized approach to worst-case design in parametric and geometric shape optimization. Math. Models Methods Appl. Sci. 24 (2014) 2199–2257. [Google Scholar]
  31. G. Allaire and C. Dapogny, A deterministic approximation method in shape optimization under random uncertainties. SMAI J. Computat. Math. 1 (2015) 83–143. [Google Scholar]
  32. J. Martinez-Frutos, G. Allaire, C. Dapogny and F. Periago, Structural optimization under internal porosity constraints using topological derivatives. Comput. Methods Appl. Mech. Eng. 345 (2019) 1–25. [Google Scholar]
  33. E. Bonnetier, C. Dapogny and M.S. Vogelius, Small perturbations in the type of boundary conditions for an elliptic operator. J. Math. Pures Appl. 167 (2022) 101–174. [Google Scholar]
  34. C. Brito-Pacheco and C. Dapogny, Body-fitted tracking within a surface via a level set based mesh evolution method. J. Sci. Comput. 102 (2023).. [Google Scholar]
  35. C. Dapogny, N. Lebbe and E. Oudet, Optimization of the shape of regions supporting boundary conditions. Numer. Math. 146 (2020) 51–104. [Google Scholar]
  36. G. Fremiot and J. Sokolowski, Shape sensitivity analysis of problems with singularities. Shape optimization and optimal design (Cambridge, 1999). Lect. Notes Pure Appl. Math. 216 (1999) 255–276. [Google Scholar]
  37. G. Allaire, C. Dapogny and P. Frey, Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282 (2014) 22–53. [Google Scholar]
  38. E. Martinet, Numerical optimization of Neumann eigenvalues of domains in the sphere. J. Computat. Phys. 508 (2024) 113002. [Google Scholar]
  39. G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, in Geometric partial differential equations, part II. Handbook of Numerical Analysis, Vol. 22, edited by A. Bonito and R. Nochetto (2021) 1–132. [Google Scholar]
  40. G. Allaire, Conception optimale de structures, Vol. 58. Springer (2007). [Google Scholar]
  41. A. Henrot and M. Pierre, Shape variation and optimization. EMS Tracts in Mathematics, Vol. 28 (2018). [Google Scholar]
  42. F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Pré-publication du Laboratoire d’Analyse Numérique (1976). [Google Scholar]
  43. M.C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics, analysis, differential calculus, and optimization. SIAM (2011). [Google Scholar]
  44. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization. Springer (1992). [Google Scholar]
  45. F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Vol. 135. Cambridge University Press (2012). [Google Scholar]
  46. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015). [Google Scholar]
  47. H.A. Eschenauer, V.V. Kobelev and A. Schumacher, Bubble method for topology and shape optimization of structures. Struct. Optim. 8 (1994) 42–51. [Google Scholar]
  48. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [Google Scholar]
  49. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. [Google Scholar]
  50. S. Amstutz, An introduction to the topological derivative. Eng. Computat. 9 (2021) 3–33. [Google Scholar]
  51. A.A. Novotny and J. Sokolowski, Topological Derivatives in Shape Optimization. Springer Science & Business Media (2012). [Google Scholar]
  52. B. Samet, Topological sensitivity analysis with respect to a small hole located at the boundary of the domain. Asymptotic Anal. 66 (2010) 35–49. [Google Scholar]
  53. G. Allaire, F. De Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybernet. 34 (2005) 59. [Google Scholar]
  54. M.P. Do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated, 2nd edn. Courier Dover Publications (2016). [Google Scholar]
  55. L. Ambrosio and H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43 (1994) 693–737. [Google Scholar]
  56. S. Lang, Fundamentals of Differential Geometry, Vol. 191. Springer Science & Business Media (2012). [Google Scholar]
  57. H. Azegami, Shape Optimization Problems. Springer (2020). [Google Scholar]
  58. M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Vol. 1341. Springer (2006). [Google Scholar]
  59. P. Grisvard, Elliptic problems in nonsmooth domains. SIAM (2011). [Google Scholar]
  60. V.A. Kozlov, V. Mazia and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Vol. 52. American Mathematical Society (1997). [Google Scholar]
  61. J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction cout. ESAIM: Math. Model. Numer. Anal. 20 (1986) 371–402. [Google Scholar]
  62. G. Fremiot and J. Sokolowski, Shape sensitivity analysis of problems with singularities. Lect. Notes Pure Appl. Math. (2001) 255–276. [Google Scholar]
  63. L. Rakotondrainibe, Modélisation mécanique d’une “Faee Accessoire Assemblée” et optimisation d’un modèle simplifie., PhD Thesis. Ecole Polytechnique X (2017). [Google Scholar]
  64. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media (2010). [Google Scholar]
  65. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (2015). [Google Scholar]
  66. F. Feppon, G. Allaire and C. Dapogny, A variational formulation for computing shape derivatives of geometric constraints along rays. ESAIM: M2AN 54 (2020) 181–228. [Google Scholar]
  67. G. Allaire, C. Dapogny, G. Delgado, and G. Michailidis, Multi-phase structural optimization via a level set method. ESAIM: Control Optim. Calc. Var. 20 (2014) 576–611. [Google Scholar]
  68. W.C.H. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
  69. G.B. Folland, Introduction to Partial Differential Equations. Princeton University Press (1995). [Google Scholar]
  70. H. Ammari, H. Kang and H. Lee, Layer Potential Techniques in Spectral Analysis, Vol. 153. American Mathematical Society (2009). [Google Scholar]
  71. A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Rational Mech. Anal. 105 (1989) 299–326. [CrossRef] [MathSciNet] [Google Scholar]
  72. J.D. Jackson, Classical Electrodynamics. John Wiley & Sons (2007). [Google Scholar]
  73. E. Copson, On the problem of the electrified disc. Proc. Edinb. Math. Soc. 8 (1947) 14–19. [Google Scholar]
  74. C. Dapogny, The topological ligament in shape optimization: an approach based on thin tubular inhomogeneities asymptotics. SMAI J. Computat. Math. 7 (2021) 185–266. [Google Scholar]
  75. E. Bängtsson, D. Noreland and M. Berggren, Shape optimization of an acoustic horn. Comput. Methods Appl. Mech. Eng. 192 (2003) 1533–1571. [Google Scholar]
  76. E. Wadbro and M. Berggren, Topology optimization of an acoustic horn. Comput. Methods Appl. Mech. Eng. 196 (2006) 420–436. [Google Scholar]
  77. A. Ern and J.-L. Guermond, Finite Elements. II. Galerkin Approximation, Elliptic and Mixed PDEs. Springer Nature, Cham, Switzerland (2021). [Google Scholar]
  78. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55. Courier Corporation (1965). [Google Scholar]
  79. P.L. Gould and Y. Feng, Introduction to Linear Elasticity. Springer (1994). [Google Scholar]
  80. H. Ammari and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Vol. 162. Springer Science & Business Media (2007). [Google Scholar]
  81. V.D. Kupradze, Three-dimensional Problems of Elasticity and Thermoelasticity. Elsevier (2012). [Google Scholar]
  82. R.D. Mindlin, Force at a point in the interior of a semi-infinite solid. Physics 7 (1936) 195–202. [Google Scholar]
  83. J. Balas, J. Sladek and V. Sladek, Stress Analysis by Boundary Element Methods. Elsevier (2013). [Google Scholar]
  84. T. Mura, Micromechanics of Defects in Solids. Springer Science & Business Media (2013). [Google Scholar]
  85. J.R. Barber, Contact Mechanics, Vol. 20. Springer (2018). [Google Scholar]
  86. K.L. Johnson, Contact Mechanics. Cambridge University Press (1987). [Google Scholar]
  87. S. Krenk, A circular crack under asymmetric loads and some related integral equations. J. Appl. Mech. 46 (1979).. [Google Scholar]
  88. G. Allaire, C. Dapogny and P. Frey, Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Math. 349 (2011) 999–1003. [Google Scholar]
  89. G. Allaire, C. Dapogny and P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multidiscipl. Optim. 48 (2013) 711–715. [Google Scholar]
  90. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Computat. Phys. 79 (1988) 12–49. [Google Scholar]
  91. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Computat. Phys. 194 (2004) 363–393. [Google Scholar]
  92. S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum. J. Computat. Phys. 171 (2001) 272–288. [Google Scholar]
  93. J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Computat. Phys. 163 (2000) 489–528. [Google Scholar]
  94. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. [Google Scholar]
  95. S.O.R. Fedkiw and S. Osher, Level set methods and dynamic implicit surfaces. Surfaces 44 (2002) 77. [Google Scholar]
  96. J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Vol. 3. Cambridge University Press (1999). [Google Scholar]
  97. G. Balarac, F. Basile, P. Bénard, F. Bordeu, J.-B. Chapelier, L. Cirrottola, G. Caumon, C. Dapogny, P. Frey, A. Froehly et al., Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing. Math. Action 11 (2022) 129–164. [CrossRef] [Google Scholar]
  98. C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Computat. Phys. 262 (2014) 358–378. [CrossRef] [Google Scholar]
  99. P.J. Frey and P.-L. George, Mesh generation: application to finite elements. ISTE (2007). [Google Scholar]
  100. C. Brito-Pacheco, Rodin, code available at https://github.com/cbritopacheco/rodin (2023). [Google Scholar]
  101. J.A. Sethian, A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 1591–1595. [Google Scholar]
  102. R. Kimmel and J.A. Sethian, Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 8431–8435. [Google Scholar]
  103. C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49 (2012) 193–219. [Google Scholar]
  104. C. Bui, C. Dapogny and P. Frey, An accurate anisotropic adaptation method for solving the level set advection equation. Int. J. Numer. Methods Fluids 70 (2012) 899–922. [Google Scholar]
  105. C. Dapogny and F. Feppon, Shape optimization using a level set based mesh evolution method: an overview and tutorial. Comptes Rendus Math. 361 (2023) 1267–1332. [Google Scholar]
  106. A.J. Jerri, Introduction to Integral Equations with Applications. John Wiley & Sons (1999). [Google Scholar]
  107. W. Hackbusch, Integral equations: theory and numerical treatment, Vol. 120. Birkhäuser (2012). [Google Scholar]
  108. P.K. Kythe, An Introduction to Boundary Element Methods. CRC Press (2020). [Google Scholar]
  109. J.T. Katsikadelis, The Boundary Element Method for Engineers and Scientists: Theory and Applications. Academic Press (2016). [Google Scholar]
  110. S.A. Sauter and C. Schwab, Boundary element methods. Bound. Element Methods (2011) 183–287. [Google Scholar]
  111. J. Gwinner and E.P. Stephan, Advanced boundary element methods. Treatment of Boundary Value, Transmission and Contact Problems. Cham: Springer (2018). [Google Scholar]
  112. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 40. Siam (2002). [Google Scholar]
  113. A. Ern and J.-L. Guermond, Finite Elements I: Approximation and Interpolation, Vol. 72. Springer Nature (2021). [Google Scholar]
  114. W. Hackbusch and S.A. Sauter, On the efficient use of the galerkin-method to solve Fredholm integral equations. Appl. Math. 38 (1993) 301–322. [Google Scholar]
  115. P. Theocaris and N. Ioakimidis, Numerical integration methods for the solution of singular integral equations. Q. Appl. Math. 35 (1977) 173–183. [Google Scholar]
  116. M. Guiggiani and P. Casalini, Direct computation of Cauchy principal value integrals in advanced boundary elements. Int. J. Numer. Methods Eng. 24 (1987) 1711–1720. [Google Scholar]
  117. J. Lachat and J. Watson, Effective numerical treatment of boundary integral equations: a formulation for threedimensional elastostatics. Int. J. Numer. Methods Eng. 10 (1976) 991–1005. [Google Scholar]
  118. E. Stephan and W. Wendland, A boundary integral equation method for three-dimensional crack problems in elasticity. Math. Methods Appl. Sci. 8 (1986) 609–623. [Google Scholar]
  119. E.P. Stephan, Boundary integral equations for magnetic screens in ℝ3. Proc. Roy. Soc. Edinb. Sect. A: Math. 102 (1986) 189–210. [Google Scholar]
  120. E.P. Stephan, Boundary integral equations for screen problems in ℝ3. Integral Equ. Operator Theory 10 (1987) 236–257. [Google Scholar]
  121. C. Brito-Pacheco, Shape and Topology Optimization on Surfaces, PhD thesis. Université Grenoble-Alpes (2024). [Google Scholar]
  122. N.-T. Nguyen, S.T. Wereley and S.A.M. Shaegh, Fundamentals and Applications of Microfluidics. Artech House (2019). [Google Scholar]
  123. H.A. Stone and S. Kim, Microfluidics: basic issues, applications, and challenges. AIChE J. 47 (2001) 1250. [Google Scholar]
  124. H. Chen, Y. Zhang, I. Mezic, C. Meinhart and L. Petzold, Numerical simulation of an electroosmotic micromixer, in ASME International Mechanical Engineering Congress and Exposition, 37165 (2003) 653–658. [Google Scholar]
  125. B.-J. Lai, L.-T. Zhu, Z. Chen, B. Ouyang and Z.-H. Luo, Review on blood flow dynamics in lab-on-a-chip systems: an engineering perspective. Chem Bio Eng. 1 (2024) 26–43. [Google Scholar]
  126. S. Qian and H.H. Bau, A chaotic electroosmotic stirrer. Analyt. Chem. 74 (2002) 3616–3625. [Google Scholar]
  127. N. Sasaki, T. Kitamori and H.-B. Kim, AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6 (2006) 550–554. [Google Scholar]
  128. J.-B. Zhang, G.-W. He and F. Liu, Electro-osmotic flow and mixing in heterogeneous microchannels. Phys. Rev. E 73 (2006) 056305. [Google Scholar]
  129. Y. Deng, T. Zhou, Z. Liu, Y. Wu, S. Qian and J.G. Korvink, Topology optimization of electrode patterns for electroosmotic micromixer. Int. J. Heat Mass Transf. 126 (2018) 1299–1315. [Google Scholar]
  130. Y. Zhang, H. Chen, I. Mezic, C. Meinhart, L. Petzold and N. MacDonald, Soi processing of a ring electrokinetic chaotic micromixer, in Proceedings of the NSTI Nanotechnology Conference and Trade Show (Nanotech 2004), 1 (2004) 292–295. [Google Scholar]
  131. H. Jalili, M. Raad, and D.A. Fallah, Numerical study on the mixing quality of an electroosmotic micromixer under periodic potential. Proc. Inst. Mech. Eng. Part C 234 (2020) 2113–2125. [Google Scholar]
  132. G. Allaire, Shape Optimization by the Homogenization Method, Vol. 146. Springer Science & Business Media (2002). [Google Scholar]
  133. D. Bucur and G. Buttazzo, Variational Methods in Some Shape Optimization Problems. Springer (2002). [Google Scholar]
  134. A. Adler and D. Holder, Electrical Impedance Tomography: Methods, History and Applications. CRC Press (2021). [Google Scholar]
  135. K. Bryan and T. Leise, Impedance imaging, inverse problems, and Harry Potter’s cloak. SIAM Rev. 52 (2010) 359377. [Google Scholar]
  136. A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51 (2009) 3–33. [Google Scholar]
  137. A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems. Bull. Am. Math. Soc. 46 (2009) 55–97. [Google Scholar]
  138. R.V. Kohn, H. Shen, M.S. Vogelius and M.I. Weinstein, Cloaking via change of variables in electric impedance tomography. Inverse Probl. 24 (2008) 015016. [CrossRef] [Google Scholar]
  139. R. Griesmaier and M.S. Vogelius, Enhanced approximate cloaking by optimal change of variables. Inverse Probl. 30 (2014) 035014. [Google Scholar]
  140. B.-I. Popa and S.A. Cummer, Cloaking with optimized homogeneous anisotropic layers. Phys. Rev. A 79 (2009) 023806. [Google Scholar]
  141. S. Xi, H. Chen, B. Zhang, B.-I. Wu and J.A. Kong, Route to low-scattering cylindrical cloaks with finite permittivity and permeability. Phys. Rev. B 79 (2009) 155122. [Google Scholar]
  142. A.N. Norris, Acoustic cloaking theory. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 464 (2008) 2411–2434. [Google Scholar]
  143. Z. Yang and X. Huang, An acoustic cloaking design based on topology optimization. J. Acoust. Soc. Am. 152 (2022) 3510–3521. [Google Scholar]
  144. G. Fujii, M. Takahashi and Y. Akimoto, Acoustic cloak designed by topology optimization for acoustic-elastic coupled systems. Appl. Phys. Lett. 118 (2021).. [Google Scholar]
  145. Z. Ma, O. Stalnov and X. Huang, Design method for an acoustic cloak in flows by topology optimization. Acta Mechanica Sinica 35 (2019) 964–971. [Google Scholar]
  146. S. Cominelli, D.E. Quadrelli, C. Sinigaglia and F. Braghin, Design of arbitrarily shaped acoustic cloaks through partial differential equation-constrained optimization satisfying sonic-metamaterial design requirements. Proc. Roy. Soc. A 478 (2022) 20210750. [Google Scholar]
  147. M. Alves, Frequency-domain models, in Numerical Modelling of Wave Energy Converters. Academic Press (2016) 11–30. [Google Scholar]
  148. J.J. Shirron and I. Babuska, A comparison of approximate boundary conditions and infinite element methods for exterior helmholtz problems. Comput. Methods Appl. Mech. Eng. 164 (1998) 121–139. [Google Scholar]
  149. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Computat. Phys. 114 (1994) 185–200. [Google Scholar]
  150. S. Marburg, Discretization requirements: How many elements per wavelength are necessary?, in Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods. Springer (2008) 309–332. [Google Scholar]
  151. I. Dayyani, A. Shaw, E.S. Flores and M. Friswell, The mechanics of composite corrugated structures: a review with applications in morphing aircraft. Composite Struct. 133 (2015) 358–380. [Google Scholar]
  152. T. Yokozeki, S.-i. Takeda, T. Ogasawara and T. Ishikawa, Mechanical properties of corrugated composites for candidate materials of flexible wing structures. Composites A: Appl. Sci. Manuf. 37 (2006) 1578–1586. [Google Scholar]
  153. L.A. Szolga and R.T. Opra, Robotic arm for biological probe tubes handling, in 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE (2021) 317–321. [Google Scholar]
  154. P. Vichare, A. Nassehi and S.T. Newman, Unified representation of fixtures: clamping, locating and supporting elements in CNC manufacture. Int. J. Prod. Res. 49 (2011) 5017–5032. [Google Scholar]
  155. S. Amstutz, Analysis of a level set method for topology optimization. Optim. Methods Softw. 26 (2011) 555–573. [Google Scholar]
  156. S. Amstutz and H. Andra, A new algorithm for topology optimization using a level-set method. J. Computat. Phys. 216 (2006) 573–588. [Google Scholar]
  157. T. Yamada, K. Izui, S. Nishiwaki and A. Takezawa, A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 199 (2010) 2876–2891. [Google Scholar]
  158. P. Lu and R.J. Wood, Tribological performance of surface texturing in mechanical applications—a review. Surf. Topogr. Metrol. Properties 8 (2020) 043001. [Google Scholar]
  159. S. Cui, C. Zhang, M. Fillon and L. Gu, Optimization performance of plain journal bearings with partial wall slip. Tribol. Int. 145 (2020) 106137. [Google Scholar]
  160. W. Zhang and B. Zhu, Optimization design for slip/no-slip configuration of hydrophobic sliding bearings using monte carlo search. Tribol. Int. 178 (2023) 108034. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.