The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Tristan Riviere
ESAIM: COCV, 1 (1996) 77-167
Published online: 2002-08-15
This article has been cited by the following article(s):
43 articles
Solutions to the Magnetic Ginzburg–Landau Equations Concentrating on Codimension-2 Minimal Submanifolds
Marco Badran and Manuel del Pino Vietnam Journal of Mathematics 52 (4) 967 (2024) https://doi.org/10.1007/s10013-024-00680-4
Convergence of the self‐dual U(1)‐Yang–Mills–Higgs energies to the (n−2)$(n-2)$‐area functional
Davide Parise, Alessandro Pigati and Daniel Stern Communications on Pure and Applied Mathematics 77 (1) 670 (2024) https://doi.org/10.1002/cpa.22150
Solutions of the Ginzburg–Landau equations concentrating on codimension‐2 minimal submanifolds
Marco Badran and Manuel del Pino Journal of the London Mathematical Society 109 (1) (2024) https://doi.org/10.1112/jlms.12851
Entire solutions to 4 dimensional Ginzburg–Landau equations and codimension 2 minimal submanifolds
Marco Badran and Manuel del Pino Advances in Mathematics 435 109365 (2023) https://doi.org/10.1016/j.aim.2023.109365
Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem
Carlos Román, Etienne Sandier and Sylvia Serfaty Proceedings of the London Mathematical Society 126 (3) 1015 (2023) https://doi.org/10.1112/plms.12505
On the First Critical Field in the Three Dimensional Ginzburg–Landau Model of Superconductivity
Carlos Román Communications in Mathematical Physics 367 (1) 317 (2019) https://doi.org/10.1007/s00220-019-03306-w
Three Dimensional Vortex Approximation Construction and
$${\varepsilon}$$
ε
-Level Estimates for the Ginzburg–Landau Functional
Carlos Román Archive for Rational Mechanics and Analysis 231 (3) 1531 (2019) https://doi.org/10.1007/s00205-018-1304-7
Small energy Ginzburg–Landau minimizers in R3
Etienne Sandier and Itai Shafrir Journal of Functional Analysis 272 (9) 3946 (2017) https://doi.org/10.1016/j.jfa.2017.01.010
Nearly Parallel Vortex Filaments in the 3D Ginzburg–Landau Equations
Andres Contreras and Robert L. Jerrard Geometric and Functional Analysis 27 (5) 1161 (2017) https://doi.org/10.1007/s00039-017-0425-8
Mean field limits for Ginzburg-Landau vortices
Sylvia Serfaty Séminaire Laurent Schwartz — EDP et applications 1 (2016) https://doi.org/10.5802/slsedp.91
On a Fractional Ginzburg–Landau Equation and 1/2-Harmonic Maps into Spheres
Vincent Millot and Yannick Sire Archive for Rational Mechanics and Analysis 215 (1) 125 (2015) https://doi.org/10.1007/s00205-014-0776-3
Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies
Sylvia Serfaty Journal of Statistical Physics 154 (3) 660 (2014) https://doi.org/10.1007/s10955-013-0891-9
A Continuous Model of Transportation Revisited
L. Brasco and M. Petrache Journal of Mathematical Sciences 196 (2) 119 (2014) https://doi.org/10.1007/s10958-013-1644-7
Vortex-filaments pinning for inhomogeneous Ginzburg–Landau equations
Ling Zhou and Zuhan Liu Applied Mathematics and Computation 219 (10) 5321 (2013) https://doi.org/10.1016/j.amc.2012.11.028
Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions
Alberto Farina and Petru Mironescu Calculus of Variations and Partial Differential Equations 46 (3-4) 523 (2013) https://doi.org/10.1007/s00526-012-0492-5
Vortex-filaments for inhomogeneous superconductors in three dimensions
Zuhan Liu and Ling Zhou Nonlinear Analysis: Real World Applications 11 (2) 1046 (2010) https://doi.org/10.1016/j.nonrwa.2009.01.044
New monotonicity formulae for semi-linear elliptic and parabolic systems
Li Ma, Xianfa Song and Lin Zhao Chinese Annals of Mathematics, Series B 31 (3) 411 (2010) https://doi.org/10.1007/s11401-008-0282-8
The spinor Ginzburg–Landau model in dimension three
Zuhan Liu and Ling Zhou Applied Mathematics and Computation 207 (2) 448 (2009) https://doi.org/10.1016/j.amc.2008.10.060
Gamma limit of the nonself-dual Chern–Simons–Higgs energy
Matthias Kurzke and Daniel Spirn Journal of Functional Analysis 255 (3) 535 (2008) https://doi.org/10.1016/j.jfa.2008.04.020
On the Ginzburg–Landau model of a superconducting ball in a uniform field
Stan Alama, Lia Bronsard and J. Alberto Montero Annales de l'Institut Henri Poincaré C, Analyse non linéaire 23 (2) 237 (2006) https://doi.org/10.1016/j.anihpc.2005.03.004
BOUNDARY PROBLEMS FOR THE GINZBURG–LANDAU EQUATION
DAVID CHIRON Communications in Contemporary Mathematics 07 (05) 597 (2005) https://doi.org/10.1142/S0219199705001908
Local Minimizers of the Ginzburg-Landau Energy with Magnetic Field in Three Dimensions
Robert Jerrard, Alberto Montero and Peter Sternberg Communications in Mathematical Physics 249 (3) 549 (2004) https://doi.org/10.1007/s00220-004-1082-y
Properties of vortices in Bose–Einstein condensates
Amandine Aftalion Comptes Rendus. Physique 5 (1) 9 (2004) https://doi.org/10.1016/j.crhy.2004.01.001
A product-estimate for Ginzburg–Landau and corollaries
Etienne Sandier and Sylvia Serfaty Journal of Functional Analysis 211 (1) 219 (2004) https://doi.org/10.1016/S0022-1236(03)00199-X
Handbook of Differential Equations: Stationary Partial Differential Equations
Itai Shafrir Handbook of Differential Equations: Stationary Partial Differential Equations 1 297 (2004) https://doi.org/10.1016/S1874-5733(04)80007-X
Local minimizers with vortices to the Ginzburg‐Landau system in three dimensions
J. Alberto Montero, Peter Sternberg and William P. Ziemer Communications on Pure and Applied Mathematics 57 (1) 99 (2004) https://doi.org/10.1002/cpa.10113
Two results on entire solutions of Ginzburg–Landau system in higher dimensions
Alberto Farina Journal of Functional Analysis 214 (2) 386 (2004) https://doi.org/10.1016/j.jfa.2003.07.012
APPROXIMATIONS WITH VORTICITY BOUNDS FOR THE GINZBURG–LANDAU FUNCTIONAL
F. BETHUEL, G. ORLANDI and D. SMETS Communications in Contemporary Mathematics 06 (05) 803 (2004) https://doi.org/10.1142/S0219199704001537
H1/2 maps with values into the circle: Minimal Connections, Lifting, and the Ginzburg–Landau equation
Jean Bourgain, Haim Brezis and Petru Mironescu Publications mathématiques de l'IHÉS 99 (1) 1 (2004) https://doi.org/10.1007/s10240-004-0019-5
The interplay between analysis and topology in some nonlinear PDE problems
Haim Brezis Bulletin of the American Mathematical Society 40 (2) 179 (2003) https://doi.org/10.1090/S0273-0979-03-00976-5
Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature
Fabrice Bethuel, Giandomenico Orlandi and Didier Smets Comptes Rendus Mathematique 336 (9) 719 (2003) https://doi.org/10.1016/S1631-073X(03)00167-5
Limiting Behavior of the Ginzburg–Landau Functional
Robert L. Jerrard and Halil Mete Soner Journal of Functional Analysis 192 (2) 524 (2002) https://doi.org/10.1006/jfan.2001.3906
Uniform estimates for the parabolic Ginzburg–Landau equation
F. Bethuel and G. Orlandi ESAIM: Control, Optimisation and Calculus of Variations 8 219 (2002) https://doi.org/10.1051/cocv:2002026
A Quantization Property for Moving Line Vortices
Fang‐Hua Lin and Tristan Rivière Communications on Pure and Applied Mathematics 54 (7) 826 (2001) https://doi.org/10.1002/cpa.3003
estimates for solutions to the Ginzburg–Landau equation with boundary data in
Fabrice Bethuel, Jean Bourgain, Haı̈m Brezis and Giandomenico Orlandi Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333 (12) 1069 (2001) https://doi.org/10.1016/S0764-4442(01)02191-7
Vortex energy and vortex bending for a rotating Bose-Einstein condensate
Amandine Aftalion and Tristan Riviere Physical Review A 64 (4) (2001) https://doi.org/10.1103/PhysRevA.64.043611
Asymptotics for the Ginzburg–Landau Equation in Arbitrary Dimensions
F Bethuel, H Brezis and G Orlandi Journal of Functional Analysis 186 (2) 432 (2001) https://doi.org/10.1006/jfan.2001.3791
A quantization property for static Ginzburg-Landau vortices
Fang-Hua Lin and Tristan Rivi�re Communications on Pure and Applied Mathematics 54 (2) 206 (2001) https://doi.org/10.1002/1097-0312(200102)54:2<206::AID-CPA3>3.0.CO;2-W
Dense Subsets of H1/2(S2, S1)
Tristan Rivière Annals of Global Analysis and Geometry 18 (5) 517 (2000) https://doi.org/10.1023/A:1006655723537
Lifting in Sobolev spaces
Jean Bourgain, Haim Brezis and Petru Mironescu Journal d'Analyse Mathématique 80 (1) 37 (2000) https://doi.org/10.1007/BF02791533
Threshold transition energies for Ginzburg-Landau functionals
Luís Almeida Nonlinearity 12 (5) 1389 (1999) https://doi.org/10.1088/0951-7715/12/5/312
Singularities of harmonic maps
Robert Hardt Bulletin of the American Mathematical Society 34 (1) 15 (1997) https://doi.org/10.1090/S0273-0979-97-00692-7
A variational problem for a system of magnetic monopoles joined by Abrikosov vortices
J. Fröhlich, M. Leupp and U. M. Studer Communications in Mathematical Physics 181 (2) 447 (1996) https://doi.org/10.1007/BF02101011