Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Solutions to the Magnetic Ginzburg–Landau Equations Concentrating on Codimension-2 Minimal Submanifolds

Marco Badran and Manuel del Pino
Vietnam Journal of Mathematics 52 (4) 967 (2024)
https://doi.org/10.1007/s10013-024-00680-4

Convergence of the self‐dual U(1)‐Yang–Mills–Higgs energies to the (n−2)$(n-2)$‐area functional

Davide Parise, Alessandro Pigati and Daniel Stern
Communications on Pure and Applied Mathematics 77 (1) 670 (2024)
https://doi.org/10.1002/cpa.22150

Solutions of the Ginzburg–Landau equations concentrating on codimension‐2 minimal submanifolds

Marco Badran and Manuel del Pino
Journal of the London Mathematical Society 109 (1) (2024)
https://doi.org/10.1112/jlms.12851

Entire solutions to 4 dimensional Ginzburg–Landau equations and codimension 2 minimal submanifolds

Marco Badran and Manuel del Pino
Advances in Mathematics 435 109365 (2023)
https://doi.org/10.1016/j.aim.2023.109365

Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem

Carlos Román, Etienne Sandier and Sylvia Serfaty
Proceedings of the London Mathematical Society 126 (3) 1015 (2023)
https://doi.org/10.1112/plms.12505

On the First Critical Field in the Three Dimensional Ginzburg–Landau Model of Superconductivity

Carlos Román
Communications in Mathematical Physics 367 (1) 317 (2019)
https://doi.org/10.1007/s00220-019-03306-w

Three Dimensional Vortex Approximation Construction and $${\varepsilon}$$ ε -Level Estimates for the Ginzburg–Landau Functional

Carlos Román
Archive for Rational Mechanics and Analysis 231 (3) 1531 (2019)
https://doi.org/10.1007/s00205-018-1304-7

Nearly Parallel Vortex Filaments in the 3D Ginzburg–Landau Equations

Andres Contreras and Robert L. Jerrard
Geometric and Functional Analysis 27 (5) 1161 (2017)
https://doi.org/10.1007/s00039-017-0425-8

On a Fractional Ginzburg–Landau Equation and 1/2-Harmonic Maps into Spheres

Vincent Millot and Yannick Sire
Archive for Rational Mechanics and Analysis 215 (1) 125 (2015)
https://doi.org/10.1007/s00205-014-0776-3

Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions

Alberto Farina and Petru Mironescu
Calculus of Variations and Partial Differential Equations 46 (3-4) 523 (2013)
https://doi.org/10.1007/s00526-012-0492-5

New monotonicity formulae for semi-linear elliptic and parabolic systems

Li Ma, Xianfa Song and Lin Zhao
Chinese Annals of Mathematics, Series B 31 (3) 411 (2010)
https://doi.org/10.1007/s11401-008-0282-8

On the Ginzburg–Landau model of a superconducting ball in a uniform field

Stan Alama, Lia Bronsard and J. Alberto Montero
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 23 (2) 237 (2006)
https://doi.org/10.1016/j.anihpc.2005.03.004

Local Minimizers of the Ginzburg-Landau Energy with Magnetic Field in Three Dimensions

Robert Jerrard, Alberto Montero and Peter Sternberg
Communications in Mathematical Physics 249 (3) 549 (2004)
https://doi.org/10.1007/s00220-004-1082-y

Handbook of Differential Equations: Stationary Partial Differential Equations

Itai Shafrir
Handbook of Differential Equations: Stationary Partial Differential Equations 1 297 (2004)
https://doi.org/10.1016/S1874-5733(04)80007-X

Local minimizers with vortices to the Ginzburg‐Landau system in three dimensions

J. Alberto Montero, Peter Sternberg and William P. Ziemer
Communications on Pure and Applied Mathematics 57 (1) 99 (2004)
https://doi.org/10.1002/cpa.10113

APPROXIMATIONS WITH VORTICITY BOUNDS FOR THE GINZBURG–LANDAU FUNCTIONAL

F. BETHUEL, G. ORLANDI and D. SMETS
Communications in Contemporary Mathematics 06 (05) 803 (2004)
https://doi.org/10.1142/S0219199704001537

H1/2 maps with values into the circle: Minimal Connections, Lifting, and the Ginzburg–Landau equation

Jean Bourgain, Haim Brezis and Petru Mironescu
Publications mathématiques de l'IHÉS 99 (1) 1 (2004)
https://doi.org/10.1007/s10240-004-0019-5

Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature

Fabrice Bethuel, Giandomenico Orlandi and Didier Smets
Comptes Rendus Mathematique 336 (9) 719 (2003)
https://doi.org/10.1016/S1631-073X(03)00167-5

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel and G. Orlandi
ESAIM: Control, Optimisation and Calculus of Variations 8 219 (2002)
https://doi.org/10.1051/cocv:2002026

A Quantization Property for Moving Line Vortices

Fang‐Hua Lin and Tristan Rivière
Communications on Pure and Applied Mathematics 54 (7) 826 (2001)
https://doi.org/10.1002/cpa.3003

estimates for solutions to the Ginzburg–Landau equation with boundary data in

Fabrice Bethuel, Jean Bourgain, Haı̈m Brezis and Giandomenico Orlandi
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333 (12) 1069 (2001)
https://doi.org/10.1016/S0764-4442(01)02191-7

Asymptotics for the Ginzburg–Landau Equation in Arbitrary Dimensions

F Bethuel, H Brezis and G Orlandi
Journal of Functional Analysis 186 (2) 432 (2001)
https://doi.org/10.1006/jfan.2001.3791

A variational problem for a system of magnetic monopoles joined by Abrikosov vortices

J. Fröhlich, M. Leupp and U. M. Studer
Communications in Mathematical Physics 181 (2) 447 (1996)
https://doi.org/10.1007/BF02101011