The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Bertrand Dekoninck , Serge Nicaise
ESAIM: COCV, 4 (1999) 57-81
Published online: 2002-08-15
This article has been cited by the following article(s):
29 articles
Stability of Euler-Bernoulli beam equation on a star-shaped network with indefinite damping
Zied Bouallagui and Mohamed Jellouli Applicable Analysis 1 (2025) https://doi.org/10.1080/00036811.2025.2468518
Stability of Elastic Multi-Link Structures
Kaïs Ammari and Farhat Shel SpringerBriefs in Mathematics, Stability of Elastic Multi-Link Structures 35 (2022) https://doi.org/10.1007/978-3-030-86351-7_3
Exact controllability to eigensolutions of the bilinear heat equation on compact networks
Piermarco Cannarsa, Alessandro Duca and Cristina Urbani Discrete and Continuous Dynamical Systems - S 15 (6) 1377 (2022) https://doi.org/10.3934/dcdss.2022011
Exponential stability of Rayleigh beam equation on a star‐shaped network with indefinite damping
Zied Bouallagui and Mohamed Jellouli Mathematical Methods in the Applied Sciences 45 (17) 10828 (2022) https://doi.org/10.1002/mma.8419
Higher-Order Operators on Networks: Hyperbolic and Parabolic Theory
Federica Gregorio and Delio Mugnolo Integral Equations and Operator Theory 92 (6) (2020) https://doi.org/10.1007/s00020-020-02610-8
Bi-Laplacians on graphs and networks
Federica Gregorio and Delio Mugnolo Journal of Evolution Equations (2019) https://doi.org/10.1007/s00028-019-00523-7
Necessary and sufficient condition for the positivity of the Green function of a boundary value problem for a fourth-order equation on a graph
R. Ch. Kulaev Differential Equations 51 (3) 303 (2015) https://doi.org/10.1134/S0012266115030039
On vertex conditions for elastic systems
Jean-Claude Kiik, Pavel Kurasov and Muhammad Usman Physics Letters A 379 (34-35) 1871 (2015) https://doi.org/10.1016/j.physleta.2015.05.017
Exponential Stability of a Network of Beams
Farhat Shel Journal of Dynamical and Control Systems 21 (3) 443 (2015) https://doi.org/10.1007/s10883-014-9257-0
On the solvability of a boundary value problem for a fourth-order equation on a graph
R. Ch. Kulaev Differential Equations 50 (1) 25 (2014) https://doi.org/10.1134/S0012266114010042
Reduction method for a fourth-order equation on a graph
R. Ch. Kulaev Differential Equations 50 (3) 292 (2014) https://doi.org/10.1134/S0012266114030033
The green function of the boundary-value problem on a star-shaped graph
R. Ch. Kulaev Russian Mathematics 57 (2) 48 (2013) https://doi.org/10.3103/S1066369X13020060
A pinned network of Euler-Bernoulli beams under feedback controls
Kuiting Zhang and Genqi Xu Journal of Systems Science and Complexity 26 (3) 313 (2013) https://doi.org/10.1007/s11424-013-0068-2
Exponential stabilization of variable coefficient wave equations in a generic tree with small time-delays in the nodal feedbacks
Yanni Guo, Yunlan Chen, Genqi Xu and Yaxuan Zhang Journal of Mathematical Analysis and Applications 395 (2) 727 (2012) https://doi.org/10.1016/j.jmaa.2012.05.079
Study of the nodal feedback stabilization of a string-beams network
Kaïs Ammari and Michel Mehrenberger Journal of Applied Mathematics and Computing 36 (1-2) 441 (2011) https://doi.org/10.1007/s12190-010-0412-9
Stabilization and Riesz basis of a star-shaped network of Timoshenko beams
Z.-J. Han and G.-Q. Xu Journal of Dynamical and Control Systems 16 (2) 227 (2010) https://doi.org/10.1007/s10883-010-9091-y
Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses
Denis Mercier and Virginie Régnier Collectanea mathematica 60 (3) 307 (2009) https://doi.org/10.1007/BF03191374
Stability and Riesz basis property for general network of strings
Yan Ni Guo and Gen Qi Xu Journal of Dynamical and Control Systems 15 (2) 223 (2009) https://doi.org/10.1007/s10883-009-9064-1
Control of a network of Euler–Bernoulli beams
D. Mercier and V. Régnier Journal of Mathematical Analysis and Applications 342 (2) 874 (2008) https://doi.org/10.1016/j.jmaa.2007.12.062
Riesz basis and stabilization for the flexible structure of a symmetric tree‐shaped beam network
Jun‐Min Wang and Bao‐Zhu Guo Mathematical Methods in the Applied Sciences 31 (3) 289 (2008) https://doi.org/10.1002/mma.909
Spectrum of a network of Euler–Bernoulli beams
D. Mercier and V. Régnier Journal of Mathematical Analysis and Applications 337 (1) 174 (2008) https://doi.org/10.1016/j.jmaa.2007.03.080
Solvability of the boundary-value problem for a variable-order differential equation on a geometric graph
K. P. Lazarev and T. V. Beloglazova Mathematical Notes 80 (1-2) 57 (2006) https://doi.org/10.1007/s11006-006-0108-5
Разрешимость краевой задачи для разнопорядкового дифференциального уравнения на геометрическом графе
K P Lazarev, К П Лазарев, Т В Белоглазова and T V Beloglazova Математические заметки 80 (1) 60 (2006) https://doi.org/10.4213/mzm2780
Некоторые вопросы качественной теории Штурма - Лиувилля на пространственной сети
Yulii Vitaljevich Pokornyi, Юлий Витальевич Покорный, Владимир Леонидович Прядиев and Vladimir Leonidovich Pryadiev Успехи математических наук 59 (3) 115 (2004) https://doi.org/10.4213/rm738
Observation and Control of Vibrations in Tree-shaped Networks of Strings
René Dáger SIAM Journal on Control and Optimization 43 (2) 590 (2004) https://doi.org/10.1137/S0363012903421844
Partial Differential Equations On Multistructures
T Fischer and G Leugering Partial Differential Equations On Multistructures (2001) https://doi.org/10.1201/9780203902196.ch5
Partial Differential Equations On Multistructures
F Ali Mehmeti and B Dekoninck Partial Differential Equations On Multistructures (2001) https://doi.org/10.1201/9780203902196.ch1
Relationship between the lower frequency spectrum of plates and networks of beams
Serge Nicaise and Oleg Penkin Mathematical Methods in the Applied Sciences 23 (16) 1389 (2000) https://doi.org/10.1002/1099-1476(20001110)23:16<1389::AID-MMA171>3.0.CO;2-K
Dynamic Domain Decomposition of Optimal Control Problems for Networks of Strings and Timoshenko Beams
G. Leugering SIAM Journal on Control and Optimization 37 (6) 1649 (1999) https://doi.org/10.1137/S0363012997331986