Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Explicit formula for the $$\Gamma $$-convergence homogenised quadratic curvature energy in isotropic Cosserat shell models

Maryam Mohammadi Saem, Emilian Bulgariu, Ionel-Dumitrel Ghiba and Patrizio Neff
Zeitschrift für angewandte Mathematik und Physik 76 (2) (2025)
https://doi.org/10.1007/s00033-024-02415-4

On the representation of fourth- and higher-order anisotropic elasticity tensors in generalized continuum models

Marco Valerio d’Agostino, Robert J Martin, Peter Lewintan, Davide Bernardini, Alexandre Danescu and Patrizio Neff
Mathematics and Mechanics of Solids (2025)
https://doi.org/10.1177/10812865241288797

Geometric rigidity on Sobolev spaces with variable exponent and applications

Stefano Almi, Maicol Caponi, Manuel Friedrich and Francesco Solombrino
Nonlinear Differential Equations and Applications NoDEA 32 (1) (2025)
https://doi.org/10.1007/s00030-024-01016-4

Green’s functions for the isotropic planar relaxed micromorphic model — Concentrated force and concentrated couple

Panos Gourgiotis, Gianluca Rizzi, Peter Lewintan, Davide Bernardini, Adam Sky, Angela Madeo and Patrizio Neff
International Journal of Solids and Structures 292 112700 (2024)
https://doi.org/10.1016/j.ijsolstr.2024.112700

Cosserat micropolar elasticity: classical Eringen vs. dislocation form

Ionel-Dumitrel Ghiba, Gianluca Rizzi, Angela Madeo and Patrizio Neff
Journal of Mechanics of Materials and Structures 18 (1) 93 (2023)
https://doi.org/10.2140/jomms.2023.18.93

A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence

Maryam Mohammadi Saem, Ionel-Dumitrel Ghiba and Patrizio Neff
Journal of Nonlinear Science 33 (5) (2023)
https://doi.org/10.1007/s00332-023-09906-0

The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of parameters

Marco Valerio d’Agostino, Gianluca Rizzi, Hassam Khan, et al.
Continuum Mechanics and Thermodynamics 34 (6) 1393 (2022)
https://doi.org/10.1007/s00161-022-01126-3

Numerical Approaches for Investigating Quasiconvexity in the Context of Morrey’s Conjecture

Jendrik Voss, Robert J. Martin, Oliver Sander, et al.
Journal of Nonlinear Science 32 (6) (2022)
https://doi.org/10.1007/s00332-022-09820-x

Existence and uniqueness of Rayleigh waves in isotropic elastic Cosserat materials and algorithmic aspects

Hassam Khan, Ionel-Dumitrel Ghiba, Angela Madeo and Patrizio Neff
Wave Motion 110 102898 (2022)
https://doi.org/10.1016/j.wavemoti.2022.102898

Regularity of Weak Solution of Variational Problems Modeling the Cosserat Micropolar Elasticity

Yimei Li and Changyou Wang
International Mathematics Research Notices 2022 (6) 4620 (2022)
https://doi.org/10.1093/imrn/rnaa202

On in-plane drill rotations for Cosserat surfaces

Maryam Mohammadi Saem, Peter Lewintan and Patrizio Neff
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477 (2252) (2021)
https://doi.org/10.1098/rspa.2021.0158

Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy

Peter Lewintan, Stefan Müller and Patrizio Neff
Calculus of Variations and Partial Differential Equations 60 (4) (2021)
https://doi.org/10.1007/s00526-021-02000-x

L p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative

Peter Lewintan and Patrizio Neff
Comptes Rendus. Mathématique 359 (6) 749 (2021)
https://doi.org/10.5802/crmath.216

A Constrained Cosserat Shell Model up to Order $O(h^{5})$: Modelling, Existence of Minimizers, Relations to Classical Shell Models and Scaling Invariance of the Bending Tensor

Ionel-Dumitrel Ghiba, Mircea Bîrsan, Peter Lewintan and Patrizio Neff
Journal of Elasticity 146 (1) 83 (2021)
https://doi.org/10.1007/s10659-021-09851-7

Compatibility conditions of continua using Riemann–Cartan geometry

Christian G Böhmer and Yongjo Lee
Mathematics and Mechanics of Solids 26 (4) 513 (2021)
https://doi.org/10.1177/1081286520961453

Nečas–Lions lemma revisited: An Lp‐version of the generalized Korn inequality for incompatible tensor fields

Peter Lewintan and Patrizio Neff
Mathematical Methods in the Applied Sciences 44 (14) 11392 (2021)
https://doi.org/10.1002/mma.7498

Derivation of a refined six-parameter shell model: descent from the three-dimensional Cosserat elasticity using a method of classical shell theory

Mircea Bîrsan
Mathematics and Mechanics of Solids 25 (6) 1318 (2020)
https://doi.org/10.1177/1081286519900531

The axiomatic introduction of arbitrary strain tensors by Hans Richter – a commented translation of ‘Strain tensor, strain deviator and stress tensor for finite deformations’

Patrizio Neff, Kai Graban, Eva Schweickert and Robert J. Martin
Mathematics and Mechanics of Solids 25 (5) 1060 (2020)
https://doi.org/10.1177/1081286519880594

A fourth-order gauge-invariant gradient plasticity model for polycrystals based on Kröner’s incompatibility tensor

François Ebobisse and Patrizio Neff
Mathematics and Mechanics of Solids 25 (2) 129 (2020)
https://doi.org/10.1177/1081286519845026

The Isotropic Cosserat Shell Model Including Terms up to $O(h^{5})$. Part I: Derivation in Matrix Notation

Ionel-Dumitrel Ghiba, Mircea Bîrsan, Peter Lewintan and Patrizio Neff
Journal of Elasticity 142 (2) 201 (2020)
https://doi.org/10.1007/s10659-020-09796-3

The Isotropic Cosserat Shell Model Including Terms up to $O(h^{5})$. Part II: Existence of Minimizers

Ionel-Dumitrel Ghiba, Mircea Bîrsan, Peter Lewintan and Patrizio Neff
Journal of Elasticity 142 (2) 263 (2020)
https://doi.org/10.1007/s10659-020-09795-4

Identification of Scale-Independent Material Parameters in the Relaxed Micromorphic Model Through Model-Adapted First Order Homogenization

Patrizio Neff, Bernhard Eidel, Marco Valerio d’Agostino and Angela Madeo
Journal of Elasticity 139 (2) 269 (2020)
https://doi.org/10.1007/s10659-019-09752-w

Nonstandard micro-inertia terms in the relaxed micromorphic model: well-posedness for dynamics

Sebastian Owczarek, Ionel-Dumitrel Ghiba, Marco-Valerio d’Agostino and Patrizio Neff
Mathematics and Mechanics of Solids 24 (10) 3200 (2019)
https://doi.org/10.1177/1081286519838311

A higher order geometrically nonlinear Cosserat‐shell model with initial curvature effects

Patrizio Neff, Mircea Bîrsan and Ionel-Dumitrel Ghiba
PAMM 19 (1) (2019)
https://doi.org/10.1002/pamm.201900351

A canonical rate-independent model of geometrically linear isotropic gradient plasticity with isotropic hardening and plastic spin accounting for the Burgers vector

François Ebobisse, Klaus Hackl and Patrizio Neff
Continuum Mechanics and Thermodynamics 31 (5) 1477 (2019)
https://doi.org/10.1007/s00161-019-00755-5

Refined dimensional reduction for isotropic elastic Cosserat shells with initial curvature

Mircea Bîrsan, Ionel-Dumitrel Ghiba, Robert J Martin and Patrizio Neff
Mathematics and Mechanics of Solids 24 (12) 4000 (2019)
https://doi.org/10.1177/1081286519856061

Hyperelastic bodies under homogeneous Cauchy stress induced by three-dimensional non-homogeneous deformations

L Angela Mihai and Patrizio Neff
Mathematics and Mechanics of Solids 23 (4) 606 (2018)
https://doi.org/10.1177/1081286516682556

Existence result for a dislocation based model of single crystal gradient plasticity with isotropic or linear kinematic hardening

François Ebobisse, Patrizio Neff and Elias C Aifantis
The Quarterly Journal of Mechanics and Applied Mathematics 71 (1) 99 (2018)
https://doi.org/10.1093/qjmam/hbx026

Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy

Ingo Münch and Patrizio Neff
Mathematics and Mechanics of Solids 23 (1) 3 (2018)
https://doi.org/10.1177/1081286516666134

Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers

Johannes Lankeit, Patrizio Neff and Frank Osterbrink
Zeitschrift für angewandte Mathematik und Physik 68 (1) (2017)
https://doi.org/10.1007/s00033-016-0755-7

Geometrically nonlinear Cosserat elasticity in the plane: applications to chirality

Sebastian Bahamonde, Christian G. Böhmer and Patrizio Neff
Journal of Mechanics of Materials and Structures 12 (5) 689 (2017)
https://doi.org/10.2140/jomms.2017.12.689

The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

Andreas Fischle, Patrizio Neff and Dierk Raabe
Zeitschrift für angewandte Mathematik und Physik 68 (4) (2017)
https://doi.org/10.1007/s00033-017-0834-4

The geometrically nonlinear Cosserat micropolar shear–stretch energy. Part I: A general parameter reduction formula and energy‐minimizing microrotations in 2D

Andreas Fischle and Patrizio Neff
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 97 (7) 828 (2017)
https://doi.org/10.1002/zamm.201500194

Transparent anisotropy for the relaxed micromorphic model: Macroscopic consistency conditions and long wave length asymptotics

Gabriele Barbagallo, Angela Madeo, Marco Valerio d’Agostino, et al.
International Journal of Solids and Structures 120 7 (2017)
https://doi.org/10.1016/j.ijsolstr.2017.01.030

A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model

Marco Valerio d'Agostino, Gabriele Barbagallo, Ionel‐Dumitrel Ghiba, Angela Madeo and Patrizio Neff
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 97 (11) 1436 (2017)
https://doi.org/10.1002/zamm.201600227

Mathematical Modelling in Solid Mechanics

Patrizio Neff, Robert J. Martin and Bernhard Eidel
Advanced Structured Materials, Mathematical Modelling in Solid Mechanics 69 165 (2017)
https://doi.org/10.1007/978-981-10-3764-1_11

A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions

Ionel-Dumitrel Ghiba, Patrizio Neff, Angela Madeo and Ingo Münch
Mathematics and Mechanics of Solids 22 (6) 1221 (2017)
https://doi.org/10.1177/1081286515625535

Well-posedness for the microcurl model in both single and polycrystal gradient plasticity

François Ebobisse, Patrizio Neff and Samuel Forest
International Journal of Plasticity (2017)
https://doi.org/10.1016/j.ijplas.2017.01.006

Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions

Sebastian Bauer, Patrizio Neff, Dirk Pauly and Gerhard Starke
ESAIM: Control, Optimisation and Calculus of Variations 22 (1) 112 (2016)
https://doi.org/10.1051/cocv/2014068

Geometry of Logarithmic Strain Measures in Solid Mechanics

Patrizio Neff, Bernhard Eidel and Robert J. Martin
Archive for Rational Mechanics and Analysis 222 (2) 507 (2016)
https://doi.org/10.1007/s00205-016-1007-x

Advanced Methods of Continuum Mechanics for Materials and Structures

Mircea Bîrsan and Patrizio Neff
Advanced Structured Materials, Advanced Methods of Continuum Mechanics for Materials and Structures 60 391 (2016)
https://doi.org/10.1007/978-981-10-0959-4_22

Poincaré meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields

Patrizio Neff, Dirk Pauly and Karl-Josef Witsch
Journal of Differential Equations 258 (4) 1267 (2015)
https://doi.org/10.1016/j.jde.2014.10.019

Existence Theorem for Geometrically Nonlinear Cosserat Micropolar Model Under Uniform Convexity Requirements

Patrizio Neff, Mircea Bîrsan and Frank Osterbrink
Journal of Elasticity 121 (1) 119 (2015)
https://doi.org/10.1007/s10659-015-9517-6

A Riemannian approach to strain measures in nonlinear elasticity

Patrizio Neff, Bernhard Eidel, Frank Osterbrink and Robert Martin
Comptes Rendus Mécanique 342 (4) 254 (2014)
https://doi.org/10.1016/j.crme.2013.12.005

Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations

Mircea Bîrsan and Patrizio Neff
Mathematics and Mechanics of Solids 19 (4) 376 (2014)
https://doi.org/10.1177/1081286512466659

A Logarithmic Minimization Property of the Unitary Polar Factor in the Spectral and Frobenius Norms

Patrizio Neff, Yuji Nakatsukasa and Andreas Fischle
SIAM Journal on Matrix Analysis and Applications 35 (3) 1132 (2014)
https://doi.org/10.1137/130909949

A unifying perspective: the relaxed linear micromorphic continuum

Patrizio Neff, Ionel-Dumitrel Ghiba, Angela Madeo, Luca Placidi and Giuseppe Rosi
Continuum Mechanics and Thermodynamics 26 (5) 639 (2014)
https://doi.org/10.1007/s00161-013-0322-9

Dynamic problems for metamaterials: Review of existing models and ideas for further research

Dionisio Del Vescovo and Ivan Giorgio
International Journal of Engineering Science 80 153 (2014)
https://doi.org/10.1016/j.ijengsci.2014.02.022

Counterexamples in the theory of coerciveness for linear elliptic systems related to generalizations of Korn's second inequality

P. Neff and W. Pompe
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 94 (9) 784 (2014)
https://doi.org/10.1002/zamm.201300059

Unique continuation for first-order systems with integrable coefficients and applications to elasticity and plasticity

Johannes Lankeit, Patrizio Neff and Dirk Pauly
Comptes Rendus. Mathématique 351 (5-6) 247 (2013)
https://doi.org/10.1016/j.crma.2013.01.017

Uniqueness of integrable solutions to $${\nabla \zeta=G \zeta, \zeta|_\Gamma = 0}$$ for integrable tensor coefficients G and applications to elasticity

Johannes Lankeit, Patrizio Neff and Dirk Pauly
Zeitschrift für angewandte Mathematik und Physik 64 (6) 1679 (2013)
https://doi.org/10.1007/s00033-013-0314-4

Uniqueness of Integrable Solutions ∇ζ = Gζ, ζ∣Γ = 0 for Integrable Tensor‐Coefficients G and Applications to Elasticity

Johannes Lankeit, Patrizio Neff and Dirk Pauly
PAMM 13 (1) 361 (2013)
https://doi.org/10.1002/pamm.201310176

Maxwell meets Korn: A new coercive inequality for tensor fields in with square‐integrable exterior derivative

Patrizio Neff, Dirk Pauly and Karl‐Josef Witsch
Mathematical Methods in the Applied Sciences 35 (1) 65 (2012)
https://doi.org/10.1002/mma.1534

Transversely isotropic material: nonlinear Cosserat versus classical approach

I. Münch, P. Neff and W. Wagner
Continuum Mechanics and Thermodynamics 23 (1) 27 (2011)
https://doi.org/10.1007/s00161-010-0150-0

Enhanced numerical study of infinitesimal non-linear Cosserat theory based on the grain size length scale assumption

Jena Jeong and Hamidréza Ramézani
Computer Methods in Applied Mechanics and Engineering 199 (45-48) 2892 (2010)
https://doi.org/10.1016/j.cma.2010.05.017

Relaxation Theorem and Lower-Dimensional Models in Micropolar Elasticity

Igor Velčić and Josip Tambača
Mathematics and Mechanics of Solids 15 (8) 812 (2010)
https://doi.org/10.1177/1081286509342270

Semicontinuity theorem in the micropolar elasticity

Josip Tambača and Igor Velčić
ESAIM: Control, Optimisation and Calculus of Variations 16 (2) 337 (2010)
https://doi.org/10.1051/cocv/2009002

Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Patrizio Neff
CISM International Centre for Mechanical Sciences, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics 516 301 (2010)
https://doi.org/10.1007/978-3-7091-0174-2_9

Existence theorem for nonlinear micropolar elasticity

Josip Tambača and Igor Velčić
ESAIM: Control, Optimisation and Calculus of Variations 16 (1) 92 (2010)
https://doi.org/10.1051/cocv:2008065

A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy

P. Neff and J. Jeong
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 89 (2) 107 (2009)
https://doi.org/10.1002/zamm.200800156

Subgrid interaction and micro-randomness – Novel invariance requirements in infinitesimal gradient elasticity

Patrizio Neff, Jena Jeong and Hamidréza Ramézani
International Journal of Solids and Structures 46 (25-26) 4261 (2009)
https://doi.org/10.1016/j.ijsolstr.2009.07.014

Simple shear in nonlinear Cosserat elasticity: bifurcation and induced microstructure

Patrizio Neff and Ingo Münch
Continuum Mechanics and Thermodynamics 21 (3) 195 (2009)
https://doi.org/10.1007/s00161-009-0105-5

NOTES ON STRAIN GRADIENT PLASTICITY: FINITE STRAIN COVARIANT MODELLING AND GLOBAL EXISTENCE IN THE INFINITESIMAL RATE-INDEPENDENT CASE

PATRIZIO NEFF, KRZYSZTOF CHEŁMIŃSKI and HANS-DIETER ALBER
Mathematical Models and Methods in Applied Sciences 19 (02) 307 (2009)
https://doi.org/10.1142/S0218202509003449

Symmetric Cauchy stresses do not imply symmetric Biot strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom

P. Neff, A. Fischle and I. Münch
Acta Mechanica 197 (1-2) 19 (2008)
https://doi.org/10.1007/s00707-007-0509-x

IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media

Patrizio Neff
IUTAM BookSeries, IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media 11 129 (2008)
https://doi.org/10.1007/978-1-4020-9090-5_12