Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

In domain dissipation assignment of boundary controlled Port-Hamiltonian systems using backstepping

Jeanne Redaud, Jean Auriol and Yann Le Gorrec
Systems & Control Letters 185 105722 (2024)
https://doi.org/10.1016/j.sysconle.2024.105722

Exponential Decay Rate of Linear Port-Hamiltonian Systems: A Multiplier Approach

Luis A. Mora and Kirsten Morris
IEEE Transactions on Automatic Control 69 (3) 1767 (2024)
https://doi.org/10.1109/TAC.2023.3332008

A Structural Observation on Port-Hamiltonian Systems

Rainer H. Picard, Sascha Trostorff, Bruce Watson and Marcus Waurick
SIAM Journal on Control and Optimization 61 (2) 511 (2023)
https://doi.org/10.1137/21M1441365

Optimal decay for a wave-heat system with Coleman–Gurtin thermal law

Filippo Dell'Oro, Lassi Paunonen and David Seifert
Journal of Mathematical Analysis and Applications 518 (2) 126706 (2023)
https://doi.org/10.1016/j.jmaa.2022.126706

Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness

Jacek Banasiak and Adam Błoch
Evolution Equations and Control Theory 11 (4) 1331 (2022)
https://doi.org/10.3934/eect.2021046

Flows on metric graphs with general boundary conditions

Klaus-Jochen Engel and Marjeta Kramar Fijavž
Journal of Mathematical Analysis and Applications 513 (2) 126214 (2022)
https://doi.org/10.1016/j.jmaa.2022.126214

Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability

Jacek Banasiak and Adam Błoch
Networks and Heterogeneous Media 17 (1) 73 (2022)
https://doi.org/10.3934/nhm.2021024

Telegraph systems on networks and port-Hamiltonians. Ⅲ. Explicit representation and long-term behaviour

Jacek Banasiak and Adam Błoch
Evolution Equations and Control Theory 11 (6) 2165 (2022)
https://doi.org/10.3934/eect.2022016

Input-output $ L^2 $-well-posedness, regularity and Lyapunov stability of string equations on networks

Dongyi Liu and Genqi Xu
Networks and Heterogeneous Media 17 (4) 519 (2022)
https://doi.org/10.3934/nhm.2022007

Riesz Bases of Port-Hamiltonian Systems

Birgit Jacob, Julia T. Kaiser and Hans Zwart
SIAM Journal on Control and Optimization 59 (6) 4646 (2021)
https://doi.org/10.1137/20M1366216

Well-Posedness of Boundary Controlled and Observed Stochastic Port-Hamiltonian Systems

Francois Lamoline and Joseph J. Winkin
IEEE Transactions on Automatic Control 65 (10) 4258 (2020)
https://doi.org/10.1109/TAC.2019.2954481

Strongly Continuous Quasi Semigroups in Optimal Control Problems for Non-Autonomous Systems

Sutrima Sutrima, Christiana Rini Indrati and Lina Aryati
Asian-European Journal of Mathematics (2020)
https://doi.org/10.1142/S1793557121501230

Semigroups of Operators – Theory and Applications

Lassi Paunonen
Springer Proceedings in Mathematics & Statistics, Semigroups of Operators – Theory and Applications 325 349 (2020)
https://doi.org/10.1007/978-3-030-46079-2_20

Twenty years of distributed port-Hamiltonian systems: a literature review

Ramy Rashad, Federico Califano, Arjan J van der Schaft and Stefano Stramigioli
IMA Journal of Mathematical Control and Information 37 (4) 1400 (2020)
https://doi.org/10.1093/imamci/dnaa018

Boundary stabilization of first-order hyperbolic equations with input delay

Hideki Sano and Masashi Wakaiki
Japan Journal of Industrial and Applied Mathematics 36 (2) 325 (2019)
https://doi.org/10.1007/s13160-019-00346-6

Well-posedness of a class of hyperbolic partial differential equations on the semi-axis

Birgit Jacob and Sven-Ake Wegner
Journal of Evolution Equations 19 (4) 1111 (2019)
https://doi.org/10.1007/s00028-019-00507-7

Structured H∞‐control of infinite‐dimensional systems

P. Apkarian and D. Noll
International Journal of Robust and Nonlinear Control 28 (9) 3212 (2018)
https://doi.org/10.1002/rnc.4073

On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems

Alessandro Macchelli, Yann Le Gorrec, Hector Ramirez and Hans Zwart
IEEE Transactions on Automatic Control 62 (4) 1700 (2017)
https://doi.org/10.1109/TAC.2016.2595263

Robust Controllers for Regular Linear Systems with Infinite-Dimensional Exosystems

Lassi Paunonen
SIAM Journal on Control and Optimization 55 (3) 1567 (2017)
https://doi.org/10.1137/16M107181X

On a comprehensive class of linear control problems

Rainer Picard, Sascha Trostorff and Marcus Waurick
IMA Journal of Mathematical Control and Information 33 (2) 257 (2016)
https://doi.org/10.1093/imamci/dnu035

Asymptotic stability for a class of boundary control systems with non-linear damping**This work was supported by French sponsored projects HAMEC-MOPSYS and Labex ACTION under reference codes ANR-11-BS03-0002 and ANR-11-LABX-0001-01 respectively.

Hans Zwart, Hector Ramirez and Yann Le Gorrec
IFAC-PapersOnLine 49 (8) 304 (2016)
https://doi.org/10.1016/j.ifacol.2016.07.458

The piston problem in a port-Hamiltonian formalism∗∗This work is supported by the ANR HAMECMOPSYS.

Julien Lequeurre and Marius Tucsnak
IFAC-PapersOnLine 48 (13) 212 (2015)
https://doi.org/10.1016/j.ifacol.2015.10.241

C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain

Birgit Jacob, Kirsten Morris and Hans Zwart
Journal of Evolution Equations 15 (2) 493 (2015)
https://doi.org/10.1007/s00028-014-0271-1

Scalable Reduction of Elastic Continuum for Boundary Energy Control

Gou Nishida, Kenji Fujimoto and Daiji Ichishima
SIAM Journal on Control and Optimization 53 (4) 2424 (2015)
https://doi.org/10.1137/11084529X

Infinite-Dimensional Predictive Control for Hyperbolic Systems

Van Thang Pham, Didier Georges and Gildas Besançon
SIAM Journal on Control and Optimization 52 (6) 3592 (2014)
https://doi.org/10.1137/110838200

Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems

Björn Augner and Birgit Jacob
Evolution Equations & Control Theory 3 (2) 207 (2014)
https://doi.org/10.3934/eect.2014.3.207

Port Hamiltonian formulation of a system of two conservation laws with a moving interface

Mamadou Diagne and Bernhard Maschke
European Journal of Control 19 (6) 495 (2013)
https://doi.org/10.1016/j.ejcon.2013.09.001