The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Hans Zwart , Yann Le Gorrec , Bernhard Maschke , Javier Villegas
ESAIM: COCV, 16 4 (2010) 1077-1093
Published online: 2009-08-25
This article has been cited by the following article(s):
56 articles
Exponential Decay Rate of Linear Port-Hamiltonian Systems: A Multiplier Approach
Luis A. Mora and Kirsten Morris IEEE Transactions on Automatic Control 69 (3) 1767 (2024) https://doi.org/10.1109/TAC.2023.3332008
Stability and Passivity for a Class of Distributed Port-Hamiltonian Networks
Hannes Gernandt and Dorothea Hinsen SIAM Journal on Control and Optimization 62 (6) 2936 (2024) https://doi.org/10.1137/22M1539174
Well-posedness and stability of a class of linear systems
Yassine El Gantouh Positivity 28 (2) (2024) https://doi.org/10.1007/s11117-024-01035-6
In domain dissipation assignment of boundary controlled Port-Hamiltonian systems using backstepping
Jeanne Redaud, Jean Auriol and Yann Le Gorrec Systems & Control Letters 185 105722 (2024) https://doi.org/10.1016/j.sysconle.2024.105722
Stability via closure relations with applications to dissipative and port-Hamiltonian systems
Jochen Glück, Birgit Jacob, Annika Meyer, Christian Wyss and Hans Zwart Journal of Evolution Equations 24 (3) (2024) https://doi.org/10.1007/s00028-024-00992-5
Optimal decay for a wave-heat system with Coleman–Gurtin thermal law
Filippo Dell'Oro, Lassi Paunonen and David Seifert Journal of Mathematical Analysis and Applications 518 (2) 126706 (2023) https://doi.org/10.1016/j.jmaa.2022.126706
A Structural Observation on Port-Hamiltonian Systems
Rainer H. Picard, Sascha Trostorff, Bruce Watson and Marcus Waurick SIAM Journal on Control and Optimization 61 (2) 511 (2023) https://doi.org/10.1137/21M1441365
Flows on metric graphs with general boundary conditions
Klaus-Jochen Engel and Marjeta Kramar Fijavž Journal of Mathematical Analysis and Applications 513 (2) 126214 (2022) https://doi.org/10.1016/j.jmaa.2022.126214
Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability
Jacek Banasiak and Adam Błoch Networks and Heterogeneous Media 17 (1) 73 (2022) https://doi.org/10.3934/nhm.2021024
Jeanne Redaud, Jean Auriol and Yann Le Gorrec 5405 (2022) https://doi.org/10.1109/CDC51059.2022.9993273
Distributed Damping Assignment for a Wave Equation in the Port-Hamiltonian Framework
Jeanne Redaud, Jean Auriol and Yann Le Gorrec IFAC-PapersOnLine 55 (26) 155 (2022) https://doi.org/10.1016/j.ifacol.2022.10.393
Input-output $ L^2 $-well-posedness, regularity and Lyapunov stability of string equations on networks
Dongyi Liu and Genqi Xu Networks and Heterogeneous Media 17 (4) 519 (2022) https://doi.org/10.3934/nhm.2022007
Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness
Jacek Banasiak and Adam Błoch Evolution Equations and Control Theory 11 (4) 1331 (2022) https://doi.org/10.3934/eect.2021046
Exponential Decay Rate of port-Hamiltonian Systems with one side Boundary Damping
Luis A. Mora and Kirsten Morris IFAC-PapersOnLine 55 (30) 400 (2022) https://doi.org/10.1016/j.ifacol.2022.11.086
Luis A. Mora and Kirsten Morris 409 (2022) https://doi.org/10.1109/CDC51059.2022.9993139
Telegraph systems on networks and port-Hamiltonians. Ⅲ. Explicit representation and long-term behaviour
Jacek Banasiak and Adam Błoch Evolution Equations and Control Theory 11 (6) 2165 (2022) https://doi.org/10.3934/eect.2022016
Riesz Bases of Port-Hamiltonian Systems
Birgit Jacob, Julia T. Kaiser and Hans Zwart SIAM Journal on Control and Optimization 59 (6) 4646 (2021) https://doi.org/10.1137/20M1366216
Birgit Jacob and Nathanael Skrepek 6188 (2021) https://doi.org/10.1109/CDC45484.2021.9683501
Dongyi Liu, Qi Qi and Genqi Xu 867 (2021) https://doi.org/10.23919/CCC52363.2021.9550447
Strongly Continuous Quasi Semigroups in Optimal Control Problems for Non-Autonomous Systems
Sutrima Sutrima, Christiana Rini Indrati and Lina Aryati Asian-European Journal of Mathematics (2020) https://doi.org/10.1142/S1793557121501230
Semigroups of Operators – Theory and Applications
Lassi Paunonen Springer Proceedings in Mathematics & Statistics, Semigroups of Operators – Theory and Applications 325 349 (2020) https://doi.org/10.1007/978-3-030-46079-2_20
Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems
Björn Augner and Hafida Laasri Systems & Control Letters 144 104757 (2020) https://doi.org/10.1016/j.sysconle.2020.104757
Dissipative extensions and port-Hamiltonian operators on networks
Marcus Waurick and Sven-Ake Wegner Journal of Differential Equations 269 (9) 6830 (2020) https://doi.org/10.1016/j.jde.2020.05.014
Boundary control of partial differential equations using frequency domain optimization techniques
P. Apkarian and D. Noll Systems & Control Letters 135 104577 (2020) https://doi.org/10.1016/j.sysconle.2019.104577
Well-Posedness of Boundary Controlled and Observed Stochastic Port-Hamiltonian Systems
Francois Lamoline and Joseph J. Winkin IEEE Transactions on Automatic Control 65 (10) 4258 (2020) https://doi.org/10.1109/TAC.2019.2954481
Twenty years of distributed port-Hamiltonian systems: a literature review
Ramy Rashad, Federico Califano, Arjan J van der Schaft and Stefano Stramigioli IMA Journal of Mathematical Control and Information 37 (4) 1400 (2020) https://doi.org/10.1093/imamci/dnaa018
Zero dynamics for networks of waves
Birgit Jacob, Kirsten A. Morris and Hans Zwart Automatica 103 310 (2019) https://doi.org/10.1016/j.automatica.2019.02.010
On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems
Birgit Jacob and Julia T. Kaiser IEEE Control Systems Letters 3 (3) 661 (2019) https://doi.org/10.1109/LCSYS.2019.2916814
Well-posedness of a class of hyperbolic partial differential equations on the semi-axis
Birgit Jacob and Sven-Ake Wegner Journal of Evolution Equations 19 (4) 1111 (2019) https://doi.org/10.1007/s00028-019-00507-7
Well-posedness of systems of 1-D hyperbolic partial differential equations
Birgit Jacob and Julia T. Kaiser Journal of Evolution Equations 19 (1) 91 (2019) https://doi.org/10.1007/s00028-018-0470-2
Boundary stabilization of first-order hyperbolic equations with input delay
Hideki Sano and Masashi Wakaiki Japan Journal of Industrial and Applied Mathematics 36 (2) 325 (2019) https://doi.org/10.1007/s13160-019-00346-6
Stability and Robust Regulation of Passive Linear Systems
Lassi Paunonen SIAM Journal on Control and Optimization 57 (6) 3827 (2019) https://doi.org/10.1137/17M1136407
Structured H∞‐control of infinite‐dimensional systems
P. Apkarian and D. Noll International Journal of Robust and Nonlinear Control 28 (9) 3212 (2018) https://doi.org/10.1002/rnc.4073
An operator theoretic approach to infinite‐dimensional control systems
Birgit Jacob and Hans Zwart GAMM-Mitteilungen 41 (4) (2018) https://doi.org/10.1002/gamm.201800010
Robust Controllers for Regular Linear Systems with Infinite-Dimensional Exosystems
Lassi Paunonen SIAM Journal on Control and Optimization 55 (3) 1567 (2017) https://doi.org/10.1137/16M107181X
Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control
Hector Ramirez, Hans Zwart and Yann Le Gorrec Automatica 85 61 (2017) https://doi.org/10.1016/j.automatica.2017.07.045
On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems
Alessandro Macchelli, Yann Le Gorrec, Hector Ramirez and Hans Zwart IEEE Transactions on Automatic Control 62 (4) 1700 (2017) https://doi.org/10.1109/TAC.2016.2595263
Hector Ramirez, Hans Zwart, Yann Le Gorrec and Alessandro Macchelli 658 (2017) https://doi.org/10.1109/CDC.2017.8263736
Dynamical canonical systems and their explicit solutions
Alexander Sakhnovich Discrete & Continuous Dynamical Systems - A 37 (3) 1679 (2017) https://doi.org/10.3934/dcds.2017069
On a comprehensive class of linear control problems
Rainer Picard, Sascha Trostorff and Marcus Waurick IMA Journal of Mathematical Control and Information 33 (2) 257 (2016) https://doi.org/10.1093/imamci/dnu035
Asymptotic stability for a class of boundary control systems with non-linear damping**This work was supported by French sponsored projects HAMEC-MOPSYS and Labex ACTION under reference codes ANR-11-BS03-0002 and ANR-11-LABX-0001-01 respectively.
Hans Zwart, Hector Ramirez and Yann Le Gorrec IFAC-PapersOnLine 49 (8) 304 (2016) https://doi.org/10.1016/j.ifacol.2016.07.458
Using System Theory and Energy Methods to prove Existence of Non-Linear PDE's
Hans Zwart IFAC-PapersOnLine 48 (13) 241 (2015) https://doi.org/10.1016/j.ifacol.2015.10.246
Krzysztof Bartecki 241 (2015) https://doi.org/10.1109/MMAR.2015.7283880
Scalable Reduction of Elastic Continuum for Boundary Energy Control
Gou Nishida, Kenji Fujimoto and Daiji Ichishima SIAM Journal on Control and Optimization 53 (4) 2424 (2015) https://doi.org/10.1137/11084529X
The piston problem in a port-Hamiltonian formalism∗∗This work is supported by the ANR HAMECMOPSYS.
Julien Lequeurre and Marius Tucsnak IFAC-PapersOnLine 48 (13) 212 (2015) https://doi.org/10.1016/j.ifacol.2015.10.241
Zero dynamics for waves on networks
Birgit Jacob, Kirsten Morris and Hans Zwart IFAC-PapersOnLine 48 (13) 229 (2015) https://doi.org/10.1016/j.ifacol.2015.10.244
C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain
Birgit Jacob, Kirsten Morris and Hans Zwart Journal of Evolution Equations 15 (2) 493 (2015) https://doi.org/10.1007/s00028-014-0271-1
Well-posed systems—The LTI case and beyond
Marius Tucsnak and George Weiss Automatica 50 (7) 1757 (2014) https://doi.org/10.1016/j.automatica.2014.04.016
Infinite-Dimensional Predictive Control for Hyperbolic Systems
Van Thang Pham, Didier Georges and Gildas Besançon SIAM Journal on Control and Optimization 52 (6) 3592 (2014) https://doi.org/10.1137/110838200
Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems
Björn Augner and Birgit Jacob Evolution Equations & Control Theory 3 (2) 207 (2014) https://doi.org/10.3934/eect.2014.3.207
Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation
Yann Le Gorrec and Denis Matignon European Journal of Control 19 (6) 505 (2013) https://doi.org/10.1016/j.ejcon.2013.09.003
Generator property and stability for generalized difference operators
Klaus-Jochen Engel Journal of Evolution Equations 13 (2) 311 (2013) https://doi.org/10.1007/s00028-013-0179-1
Port Hamiltonian formulation of a system of two conservation laws with a moving interface
Mamadou Diagne and Bernhard Maschke European Journal of Control 19 (6) 495 (2013) https://doi.org/10.1016/j.ejcon.2013.09.001
On alternative Poisson brackets for fluid dynamical systems and their extension to Stokes-Dirac structures
B. Maschke and A.J. van der Schaft IFAC Proceedings Volumes 46 (26) 109 (2013) https://doi.org/10.3182/20130925-3-FR-4043.00083
Compositions of passive boundary control systems
Atte Aalto and Jarmo Malinen Mathematical Control & Related Fields 3 (1) 1 (2013) https://doi.org/10.3934/mcrf.2013.3.1
Stability and passivity preserving Petrov–Galerkin approximation of linear infinite-dimensional systems
Christian Harkort and Joachim Deutscher Automatica 48 (7) 1347 (2012) https://doi.org/10.1016/j.automatica.2012.04.010